| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > caovlem2 | Unicode version | ||
| Description: Lemma used in real number construction. (Contributed by set.mm contributors, 26-Aug-1995.) | 
| Ref | Expression | 
|---|---|
| caoprd.1 | 
 | 
| caoprd.2 | 
 | 
| caoprd.3 | 
 | 
| caoprd.com | 
 | 
| caoprd.distr | 
 | 
| caoprdl.4 | 
 | 
| caoprdl.5 | 
 | 
| caoprdl.ass | 
 | 
| caoprdl2.6 | 
 | 
| caoprdl2.com | 
 | 
| caoprdl2.ass | 
 | 
| Ref | Expression | 
|---|---|
| caovlem2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ovex 5552 | 
. . 3
 | |
| 2 | ovex 5552 | 
. . 3
 | |
| 3 | ovex 5552 | 
. . 3
 | |
| 4 | caoprdl2.com | 
. . 3
 | |
| 5 | caoprdl2.ass | 
. . 3
 | |
| 6 | ovex 5552 | 
. . 3
 | |
| 7 | 1, 2, 3, 4, 5, 6 | caov42 5642 | 
. 2
 | 
| 8 | caoprd.1 | 
. . . 4
 | |
| 9 | caoprd.2 | 
. . . 4
 | |
| 10 | caoprd.3 | 
. . . 4
 | |
| 11 | caoprd.com | 
. . . 4
 | |
| 12 | caoprd.distr | 
. . . 4
 | |
| 13 | caoprdl.4 | 
. . . 4
 | |
| 14 | caoprdl.5 | 
. . . 4
 | |
| 15 | caoprdl.ass | 
. . . 4
 | |
| 16 | 8, 9, 10, 11, 12, 13, 14, 15 | caovdilem 5644 | 
. . 3
 | 
| 17 | caoprdl2.6 | 
. . . 4
 | |
| 18 | 8, 9, 13, 11, 12, 10, 17, 15 | caovdilem 5644 | 
. . 3
 | 
| 19 | 16, 18 | oveq12i 5536 | 
. 2
 | 
| 20 | ovex 5552 | 
. . . 4
 | |
| 21 | ovex 5552 | 
. . . 4
 | |
| 22 | 8, 20, 21, 12 | caovdi 5635 | 
. . 3
 | 
| 23 | ovex 5552 | 
. . . 4
 | |
| 24 | ovex 5552 | 
. . . 4
 | |
| 25 | 9, 23, 24, 12 | caovdi 5635 | 
. . 3
 | 
| 26 | 22, 25 | oveq12i 5536 | 
. 2
 | 
| 27 | 7, 19, 26 | 3eqtr4i 2383 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |