New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caovmo | Unicode version |
Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of [Gleason] p. 119. (Contributed by set.mm contributors, 4-Mar-1996.) |
Ref | Expression |
---|---|
caovmo.1 | |
caovmo.2 | |
caovmo.dom | |
caovmo.3 | |
caovmo.com | |
caovmo.ass | |
caovmo.id |
Ref | Expression |
---|---|
caovmo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2413 | . . . . 5 | |
2 | oveq2 5532 | . . . . . 6 | |
3 | 2 | eqeq1d 2361 | . . . . 5 |
4 | 1, 3 | anbi12d 691 | . . . 4 |
5 | 4 | mo4 2237 | . . 3 |
6 | caovmo.1 | . . . . . . . . 9 | |
7 | vex 2863 | . . . . . . . . 9 | |
8 | vex 2863 | . . . . . . . . 9 | |
9 | caovmo.ass | . . . . . . . . 9 | |
10 | 6, 7, 8, 9 | caovass 5628 | . . . . . . . 8 |
11 | caovmo.com | . . . . . . . . 9 | |
12 | 6, 7, 8, 11, 9 | caov12 5637 | . . . . . . . 8 |
13 | 10, 12 | eqtri 2373 | . . . . . . 7 |
14 | oveq2 5532 | . . . . . . . 8 | |
15 | oveq1 5531 | . . . . . . . . . 10 | |
16 | id 19 | . . . . . . . . . 10 | |
17 | 15, 16 | eqeq12d 2367 | . . . . . . . . 9 |
18 | caovmo.id | . . . . . . . . 9 | |
19 | 17, 18 | vtoclga 2921 | . . . . . . . 8 |
20 | 14, 19 | sylan9eqr 2407 | . . . . . . 7 |
21 | 13, 20 | syl5eq 2397 | . . . . . 6 |
22 | 21 | ad2ant2rl 729 | . . . . 5 |
23 | oveq1 5531 | . . . . . . 7 | |
24 | caovmo.2 | . . . . . . . . . 10 | |
25 | 24 | elexi 2869 | . . . . . . . . 9 |
26 | 25, 8, 11 | caovcom 5626 | . . . . . . . 8 |
27 | oveq1 5531 | . . . . . . . . . 10 | |
28 | id 19 | . . . . . . . . . 10 | |
29 | 27, 28 | eqeq12d 2367 | . . . . . . . . 9 |
30 | 29, 18 | vtoclga 2921 | . . . . . . . 8 |
31 | 26, 30 | syl5eq 2397 | . . . . . . 7 |
32 | 23, 31 | sylan9eq 2405 | . . . . . 6 |
33 | 32 | ad2ant2lr 728 | . . . . 5 |
34 | 22, 33 | eqtr3d 2387 | . . . 4 |
35 | 34 | ax-gen 1546 | . . 3 |
36 | 5, 35 | mpgbir 1550 | . 2 |
37 | eleq1 2413 | . . . . . 6 | |
38 | 24, 37 | mpbiri 224 | . . . . 5 |
39 | caovmo.dom | . . . . . . 7 | |
40 | caovmo.3 | . . . . . . 7 | |
41 | 7, 39, 40 | ndmovrcl 5617 | . . . . . 6 |
42 | 41 | simprd 449 | . . . . 5 |
43 | 38, 42 | syl 15 | . . . 4 |
44 | 43 | ancri 535 | . . 3 |
45 | 44 | moimi 2251 | . 2 |
46 | 36, 45 | ax-mp 5 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wn 3 wi 4 wa 358 wal 1540 wceq 1642 wcel 1710 wmo 2205 cvv 2860 c0 3551 cxp 4771 cdm 4773 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fv 4796 df-ov 5527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |