| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > caovmo | Unicode version | ||
| Description: Uniqueness of inverse element in commutative, associative operation with identity. Remark in proof of Proposition 9-2.4 of [Gleason] p. 119. (Contributed by set.mm contributors, 4-Mar-1996.) | 
| Ref | Expression | 
|---|---|
| caovmo.1 | 
 | 
| caovmo.2 | 
 | 
| caovmo.dom | 
 | 
| caovmo.3 | 
 | 
| caovmo.com | 
 | 
| caovmo.ass | 
 | 
| caovmo.id | 
 | 
| Ref | Expression | 
|---|---|
| caovmo | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2413 | 
. . . . 5
 | |
| 2 | oveq2 5532 | 
. . . . . 6
 | |
| 3 | 2 | eqeq1d 2361 | 
. . . . 5
 | 
| 4 | 1, 3 | anbi12d 691 | 
. . . 4
 | 
| 5 | 4 | mo4 2237 | 
. . 3
 | 
| 6 | caovmo.1 | 
. . . . . . . . 9
 | |
| 7 | vex 2863 | 
. . . . . . . . 9
 | |
| 8 | vex 2863 | 
. . . . . . . . 9
 | |
| 9 | caovmo.ass | 
. . . . . . . . 9
 | |
| 10 | 6, 7, 8, 9 | caovass 5628 | 
. . . . . . . 8
 | 
| 11 | caovmo.com | 
. . . . . . . . 9
 | |
| 12 | 6, 7, 8, 11, 9 | caov12 5637 | 
. . . . . . . 8
 | 
| 13 | 10, 12 | eqtri 2373 | 
. . . . . . 7
 | 
| 14 | oveq2 5532 | 
. . . . . . . 8
 | |
| 15 | oveq1 5531 | 
. . . . . . . . . 10
 | |
| 16 | id 19 | 
. . . . . . . . . 10
 | |
| 17 | 15, 16 | eqeq12d 2367 | 
. . . . . . . . 9
 | 
| 18 | caovmo.id | 
. . . . . . . . 9
 | |
| 19 | 17, 18 | vtoclga 2921 | 
. . . . . . . 8
 | 
| 20 | 14, 19 | sylan9eqr 2407 | 
. . . . . . 7
 | 
| 21 | 13, 20 | syl5eq 2397 | 
. . . . . 6
 | 
| 22 | 21 | ad2ant2rl 729 | 
. . . . 5
 | 
| 23 | oveq1 5531 | 
. . . . . . 7
 | |
| 24 | caovmo.2 | 
. . . . . . . . . 10
 | |
| 25 | 24 | elexi 2869 | 
. . . . . . . . 9
 | 
| 26 | 25, 8, 11 | caovcom 5626 | 
. . . . . . . 8
 | 
| 27 | oveq1 5531 | 
. . . . . . . . . 10
 | |
| 28 | id 19 | 
. . . . . . . . . 10
 | |
| 29 | 27, 28 | eqeq12d 2367 | 
. . . . . . . . 9
 | 
| 30 | 29, 18 | vtoclga 2921 | 
. . . . . . . 8
 | 
| 31 | 26, 30 | syl5eq 2397 | 
. . . . . . 7
 | 
| 32 | 23, 31 | sylan9eq 2405 | 
. . . . . 6
 | 
| 33 | 32 | ad2ant2lr 728 | 
. . . . 5
 | 
| 34 | 22, 33 | eqtr3d 2387 | 
. . . 4
 | 
| 35 | 34 | ax-gen 1546 | 
. . 3
 | 
| 36 | 5, 35 | mpgbir 1550 | 
. 2
 | 
| 37 | eleq1 2413 | 
. . . . . 6
 | |
| 38 | 24, 37 | mpbiri 224 | 
. . . . 5
 | 
| 39 | caovmo.dom | 
. . . . . . 7
 | |
| 40 | caovmo.3 | 
. . . . . . 7
 | |
| 41 | 7, 39, 40 | ndmovrcl 5617 | 
. . . . . 6
 | 
| 42 | 41 | simprd 449 | 
. . . . 5
 | 
| 43 | 38, 42 | syl 15 | 
. . . 4
 | 
| 44 | 43 | ancri 535 | 
. . 3
 | 
| 45 | 44 | moimi 2251 | 
. 2
 | 
| 46 | 36, 45 | ax-mp 5 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-ima 4728 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-fv 4796 df-ov 5527 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |