New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > caovlem2 | GIF version |
Description: Lemma used in real number construction. (Contributed by set.mm contributors, 26-Aug-1995.) |
Ref | Expression |
---|---|
caoprd.1 | ⊢ A ∈ V |
caoprd.2 | ⊢ B ∈ V |
caoprd.3 | ⊢ C ∈ V |
caoprd.com | ⊢ (xGy) = (yGx) |
caoprd.distr | ⊢ (xG(yFz)) = ((xGy)F(xGz)) |
caoprdl.4 | ⊢ D ∈ V |
caoprdl.5 | ⊢ H ∈ V |
caoprdl.ass | ⊢ ((xGy)Gz) = (xG(yGz)) |
caoprdl2.6 | ⊢ R ∈ V |
caoprdl2.com | ⊢ (xFy) = (yFx) |
caoprdl2.ass | ⊢ ((xFy)Fz) = (xF(yFz)) |
Ref | Expression |
---|---|
caovlem2 | ⊢ ((((AGC)F(BGD))GH)F(((AGD)F(BGC))GR)) = ((AG((CGH)F(DGR)))F(BG((CGR)F(DGH)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 5552 | . . 3 ⊢ (AG(CGH)) ∈ V | |
2 | ovex 5552 | . . 3 ⊢ (BG(DGH)) ∈ V | |
3 | ovex 5552 | . . 3 ⊢ (AG(DGR)) ∈ V | |
4 | caoprdl2.com | . . 3 ⊢ (xFy) = (yFx) | |
5 | caoprdl2.ass | . . 3 ⊢ ((xFy)Fz) = (xF(yFz)) | |
6 | ovex 5552 | . . 3 ⊢ (BG(CGR)) ∈ V | |
7 | 1, 2, 3, 4, 5, 6 | caov42 5642 | . 2 ⊢ (((AG(CGH))F(BG(DGH)))F((AG(DGR))F(BG(CGR)))) = (((AG(CGH))F(AG(DGR)))F((BG(CGR))F(BG(DGH)))) |
8 | caoprd.1 | . . . 4 ⊢ A ∈ V | |
9 | caoprd.2 | . . . 4 ⊢ B ∈ V | |
10 | caoprd.3 | . . . 4 ⊢ C ∈ V | |
11 | caoprd.com | . . . 4 ⊢ (xGy) = (yGx) | |
12 | caoprd.distr | . . . 4 ⊢ (xG(yFz)) = ((xGy)F(xGz)) | |
13 | caoprdl.4 | . . . 4 ⊢ D ∈ V | |
14 | caoprdl.5 | . . . 4 ⊢ H ∈ V | |
15 | caoprdl.ass | . . . 4 ⊢ ((xGy)Gz) = (xG(yGz)) | |
16 | 8, 9, 10, 11, 12, 13, 14, 15 | caovdilem 5644 | . . 3 ⊢ (((AGC)F(BGD))GH) = ((AG(CGH))F(BG(DGH))) |
17 | caoprdl2.6 | . . . 4 ⊢ R ∈ V | |
18 | 8, 9, 13, 11, 12, 10, 17, 15 | caovdilem 5644 | . . 3 ⊢ (((AGD)F(BGC))GR) = ((AG(DGR))F(BG(CGR))) |
19 | 16, 18 | oveq12i 5536 | . 2 ⊢ ((((AGC)F(BGD))GH)F(((AGD)F(BGC))GR)) = (((AG(CGH))F(BG(DGH)))F((AG(DGR))F(BG(CGR)))) |
20 | ovex 5552 | . . . 4 ⊢ (CGH) ∈ V | |
21 | ovex 5552 | . . . 4 ⊢ (DGR) ∈ V | |
22 | 8, 20, 21, 12 | caovdi 5635 | . . 3 ⊢ (AG((CGH)F(DGR))) = ((AG(CGH))F(AG(DGR))) |
23 | ovex 5552 | . . . 4 ⊢ (CGR) ∈ V | |
24 | ovex 5552 | . . . 4 ⊢ (DGH) ∈ V | |
25 | 9, 23, 24, 12 | caovdi 5635 | . . 3 ⊢ (BG((CGR)F(DGH))) = ((BG(CGR))F(BG(DGH))) |
26 | 22, 25 | oveq12i 5536 | . 2 ⊢ ((AG((CGH)F(DGR)))F(BG((CGR)F(DGH)))) = (((AG(CGH))F(AG(DGR)))F((BG(CGR))F(BG(DGH)))) |
27 | 7, 19, 26 | 3eqtr4i 2383 | 1 ⊢ ((((AGC)F(BGD))GH)F(((AGD)F(BGC))GR)) = ((AG((CGH)F(DGR)))F(BG((CGR)F(DGH)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 Vcvv 2860 (class class class)co 5526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-br 4641 df-fv 4796 df-ov 5527 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |