NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbviun Unicode version

Theorem cbviun 4004
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.)
Hypotheses
Ref Expression
cbviun.1  F/_
cbviun.2  F/_
cbviun.3
Assertion
Ref Expression
cbviun
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbviun
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 cbviun.1 . . . . 5  F/_
21nfcri 2484 . . . 4  F/
3 cbviun.2 . . . . 5  F/_
43nfcri 2484 . . . 4  F/
5 cbviun.3 . . . . 5
65eleq2d 2420 . . . 4
72, 4, 6cbvrex 2833 . . 3
87abbii 2466 . 2
9 df-iun 3972 . 2
10 df-iun 3972 . 2
118, 9, 103eqtr4i 2383 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wceq 1642   wcel 1710  cab 2339   F/_wnfc 2477  wrex 2616  ciun 3970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ral 2620  df-rex 2621  df-iun 3972
This theorem is referenced by:  cbviunv  4006  funiunfvf  5469  fmpt2x  5731
  Copyright terms: Public domain W3C validator