New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbviun | GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
cbviun.1 | ⊢ ℲyB |
cbviun.2 | ⊢ ℲxC |
cbviun.3 | ⊢ (x = y → B = C) |
Ref | Expression |
---|---|
cbviun | ⊢ ∪x ∈ A B = ∪y ∈ A C |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviun.1 | . . . . 5 ⊢ ℲyB | |
2 | 1 | nfcri 2484 | . . . 4 ⊢ Ⅎy z ∈ B |
3 | cbviun.2 | . . . . 5 ⊢ ℲxC | |
4 | 3 | nfcri 2484 | . . . 4 ⊢ Ⅎx z ∈ C |
5 | cbviun.3 | . . . . 5 ⊢ (x = y → B = C) | |
6 | 5 | eleq2d 2420 | . . . 4 ⊢ (x = y → (z ∈ B ↔ z ∈ C)) |
7 | 2, 4, 6 | cbvrex 2833 | . . 3 ⊢ (∃x ∈ A z ∈ B ↔ ∃y ∈ A z ∈ C) |
8 | 7 | abbii 2466 | . 2 ⊢ {z ∣ ∃x ∈ A z ∈ B} = {z ∣ ∃y ∈ A z ∈ C} |
9 | df-iun 3972 | . 2 ⊢ ∪x ∈ A B = {z ∣ ∃x ∈ A z ∈ B} | |
10 | df-iun 3972 | . 2 ⊢ ∪y ∈ A C = {z ∣ ∃y ∈ A z ∈ C} | |
11 | 8, 9, 10 | 3eqtr4i 2383 | 1 ⊢ ∪x ∈ A B = ∪y ∈ A C |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 ∃wrex 2616 ∪ciun 3970 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ral 2620 df-rex 2621 df-iun 3972 |
This theorem is referenced by: cbviunv 4006 funiunfvf 5469 fmpt2x 5731 |
Copyright terms: Public domain | W3C validator |