New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fmpt2x | Unicode version |
Description: Functionality, domain and codomain of a class given by the "maps to" notation, where is not constant but depends on . (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
fmpt2x.1 |
Ref | Expression |
---|---|
fmpt2x |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . . . . 8 | |
2 | vex 2863 | . . . . . . . 8 | |
3 | 1, 2 | op1std 5523 | . . . . . . 7 |
4 | 3 | csbeq1d 3143 | . . . . . 6 |
5 | 1, 2 | op2ndd 5524 | . . . . . . . 8 |
6 | 5 | csbeq1d 3143 | . . . . . . 7 |
7 | 6 | csbeq2dv 3162 | . . . . . 6 |
8 | 4, 7 | eqtrd 2385 | . . . . 5 |
9 | 8 | eleq1d 2419 | . . . 4 |
10 | 9 | raliunxp 4824 | . . 3 |
11 | nfv 1619 | . . . . . . 7 | |
12 | nfv 1619 | . . . . . . 7 | |
13 | nfv 1619 | . . . . . . . . 9 | |
14 | nfcsb1v 3169 | . . . . . . . . . 10 | |
15 | 14 | nfcri 2484 | . . . . . . . . 9 |
16 | 13, 15 | nfan 1824 | . . . . . . . 8 |
17 | nfcsb1v 3169 | . . . . . . . . 9 | |
18 | 17 | nfeq2 2501 | . . . . . . . 8 |
19 | 16, 18 | nfan 1824 | . . . . . . 7 |
20 | nfv 1619 | . . . . . . . 8 | |
21 | nfcv 2490 | . . . . . . . . . 10 | |
22 | nfcsb1v 3169 | . . . . . . . . . 10 | |
23 | 21, 22 | nfcsb 3171 | . . . . . . . . 9 |
24 | 23 | nfeq2 2501 | . . . . . . . 8 |
25 | 20, 24 | nfan 1824 | . . . . . . 7 |
26 | eleq1 2413 | . . . . . . . . . 10 | |
27 | 26 | adantr 451 | . . . . . . . . 9 |
28 | eleq1 2413 | . . . . . . . . . 10 | |
29 | csbeq1a 3145 | . . . . . . . . . . 11 | |
30 | 29 | eleq2d 2420 | . . . . . . . . . 10 |
31 | 28, 30 | sylan9bbr 681 | . . . . . . . . 9 |
32 | 27, 31 | anbi12d 691 | . . . . . . . 8 |
33 | csbeq1a 3145 | . . . . . . . . . 10 | |
34 | csbeq1a 3145 | . . . . . . . . . 10 | |
35 | 33, 34 | sylan9eqr 2407 | . . . . . . . . 9 |
36 | 35 | eqeq2d 2364 | . . . . . . . 8 |
37 | 32, 36 | anbi12d 691 | . . . . . . 7 |
38 | 11, 12, 19, 25, 37 | cbvoprab12 5570 | . . . . . 6 |
39 | df-mpt2 5655 | . . . . . 6 | |
40 | df-mpt2 5655 | . . . . . 6 | |
41 | 38, 39, 40 | 3eqtr4i 2383 | . . . . 5 |
42 | fmpt2x.1 | . . . . 5 | |
43 | 8 | mpt2mptx 5709 | . . . . 5 |
44 | 41, 42, 43 | 3eqtr4i 2383 | . . . 4 |
45 | 44 | fmpt 5693 | . . 3 |
46 | 10, 45 | bitr3i 242 | . 2 |
47 | nfv 1619 | . . 3 | |
48 | 17 | nfel1 2500 | . . . 4 |
49 | 14, 48 | nfral 2668 | . . 3 |
50 | nfv 1619 | . . . . 5 | |
51 | 22 | nfel1 2500 | . . . . 5 |
52 | 33 | eleq1d 2419 | . . . . 5 |
53 | 50, 51, 52 | cbvral 2832 | . . . 4 |
54 | 34 | eleq1d 2419 | . . . . 5 |
55 | 29, 54 | raleqbidv 2820 | . . . 4 |
56 | 53, 55 | syl5bb 248 | . . 3 |
57 | 47, 49, 56 | cbvral 2832 | . 2 |
58 | nfcv 2490 | . . . 4 | |
59 | nfcv 2490 | . . . . 5 | |
60 | 59, 14 | nfxp 4811 | . . . 4 |
61 | sneq 3745 | . . . . 5 | |
62 | 61, 29 | xpeq12d 4810 | . . . 4 |
63 | 58, 60, 62 | cbviun 4004 | . . 3 |
64 | 63 | feq2i 5219 | . 2 |
65 | 46, 57, 64 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wceq 1642 wcel 1710 wral 2615 csb 3137 csn 3738 ciun 3970 cop 4562 c1st 4718 cxp 4771 wf 4778 cfv 4782 c2nd 4784 coprab 5528 cmpt 5652 cmpt2 5654 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 df-oprab 5529 df-mpt 5653 df-mpt2 5655 |
This theorem is referenced by: fmpt2 5732 |
Copyright terms: Public domain | W3C validator |