New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > fmpt2x | Unicode version |
Description: Functionality, domain and codomain of a class given by the "maps to" notation, where is not constant but depends on . (Contributed by NM, 29-Dec-2014.) |
Ref | Expression |
---|---|
fmpt2x.1 |
Ref | Expression |
---|---|
fmpt2x |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2862 | . . . . . . . 8 | |
2 | vex 2862 | . . . . . . . 8 | |
3 | 1, 2 | op1std 5522 | . . . . . . 7 |
4 | 3 | csbeq1d 3142 | . . . . . 6 |
5 | 1, 2 | op2ndd 5523 | . . . . . . . 8 |
6 | 5 | csbeq1d 3142 | . . . . . . 7 |
7 | 6 | csbeq2dv 3161 | . . . . . 6 |
8 | 4, 7 | eqtrd 2385 | . . . . 5 |
9 | 8 | eleq1d 2419 | . . . 4 |
10 | 9 | raliunxp 4823 | . . 3 |
11 | nfv 1619 | . . . . . . 7 | |
12 | nfv 1619 | . . . . . . 7 | |
13 | nfv 1619 | . . . . . . . . 9 | |
14 | nfcsb1v 3168 | . . . . . . . . . 10 | |
15 | 14 | nfcri 2483 | . . . . . . . . 9 |
16 | 13, 15 | nfan 1824 | . . . . . . . 8 |
17 | nfcsb1v 3168 | . . . . . . . . 9 | |
18 | 17 | nfeq2 2500 | . . . . . . . 8 |
19 | 16, 18 | nfan 1824 | . . . . . . 7 |
20 | nfv 1619 | . . . . . . . 8 | |
21 | nfcv 2489 | . . . . . . . . . 10 | |
22 | nfcsb1v 3168 | . . . . . . . . . 10 | |
23 | 21, 22 | nfcsb 3170 | . . . . . . . . 9 |
24 | 23 | nfeq2 2500 | . . . . . . . 8 |
25 | 20, 24 | nfan 1824 | . . . . . . 7 |
26 | eleq1 2413 | . . . . . . . . . 10 | |
27 | 26 | adantr 451 | . . . . . . . . 9 |
28 | eleq1 2413 | . . . . . . . . . 10 | |
29 | csbeq1a 3144 | . . . . . . . . . . 11 | |
30 | 29 | eleq2d 2420 | . . . . . . . . . 10 |
31 | 28, 30 | sylan9bbr 681 | . . . . . . . . 9 |
32 | 27, 31 | anbi12d 691 | . . . . . . . 8 |
33 | csbeq1a 3144 | . . . . . . . . . 10 | |
34 | csbeq1a 3144 | . . . . . . . . . 10 | |
35 | 33, 34 | sylan9eqr 2407 | . . . . . . . . 9 |
36 | 35 | eqeq2d 2364 | . . . . . . . 8 |
37 | 32, 36 | anbi12d 691 | . . . . . . 7 |
38 | 11, 12, 19, 25, 37 | cbvoprab12 5569 | . . . . . 6 |
39 | df-mpt2 5654 | . . . . . 6 | |
40 | df-mpt2 5654 | . . . . . 6 | |
41 | 38, 39, 40 | 3eqtr4i 2383 | . . . . 5 |
42 | fmpt2x.1 | . . . . 5 | |
43 | 8 | mpt2mptx 5708 | . . . . 5 |
44 | 41, 42, 43 | 3eqtr4i 2383 | . . . 4 |
45 | 44 | fmpt 5692 | . . 3 |
46 | 10, 45 | bitr3i 242 | . 2 |
47 | nfv 1619 | . . 3 | |
48 | 17 | nfel1 2499 | . . . 4 |
49 | 14, 48 | nfral 2667 | . . 3 |
50 | nfv 1619 | . . . . 5 | |
51 | 22 | nfel1 2499 | . . . . 5 |
52 | 33 | eleq1d 2419 | . . . . 5 |
53 | 50, 51, 52 | cbvral 2831 | . . . 4 |
54 | 34 | eleq1d 2419 | . . . . 5 |
55 | 29, 54 | raleqbidv 2819 | . . . 4 |
56 | 53, 55 | syl5bb 248 | . . 3 |
57 | 47, 49, 56 | cbvral 2831 | . 2 |
58 | nfcv 2489 | . . . 4 | |
59 | nfcv 2489 | . . . . 5 | |
60 | 59, 14 | nfxp 4810 | . . . 4 |
61 | sneq 3744 | . . . . 5 | |
62 | 61, 29 | xpeq12d 4809 | . . . 4 |
63 | 58, 60, 62 | cbviun 4003 | . . 3 |
64 | 63 | feq2i 5218 | . 2 |
65 | 46, 57, 64 | 3bitr4i 268 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wceq 1642 wcel 1710 wral 2614 csb 3136 csn 3737 ciun 3969 cop 4561 c1st 4717 cxp 4770 wf 4777 cfv 4781 c2nd 4783 coprab 5527 cmpt 5651 cmpt2 5653 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-csb 3137 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-iun 3971 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-co 4726 df-ima 4727 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-fo 4793 df-fv 4795 df-2nd 4797 df-oprab 5528 df-mpt 5652 df-mpt2 5654 |
This theorem is referenced by: fmpt2 5731 |
Copyright terms: Public domain | W3C validator |