NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvmpt Unicode version

Theorem cbvmpt 5677
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
cbvmpt.1  F/_
cbvmpt.2  F/_
cbvmpt.3
Assertion
Ref Expression
cbvmpt
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)

Proof of Theorem cbvmpt
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1619 . . . 4  F/
2 nfv 1619 . . . . 5  F/
3 nfs1v 2106 . . . . 5  F/
42, 3nfan 1824 . . . 4  F/
5 eleq1 2413 . . . . 5
6 sbequ12 1919 . . . . 5
75, 6anbi12d 691 . . . 4
81, 4, 7cbvopab1 4633 . . 3
9 nfv 1619 . . . . 5  F/
10 cbvmpt.1 . . . . . . 7  F/_
1110nfeq2 2501 . . . . . 6  F/
1211nfsb 2109 . . . . 5  F/
139, 12nfan 1824 . . . 4  F/
14 nfv 1619 . . . 4  F/
15 eleq1 2413 . . . . 5
16 sbequ 2060 . . . . . 6
17 cbvmpt.2 . . . . . . . 8  F/_
1817nfeq2 2501 . . . . . . 7  F/
19 cbvmpt.3 . . . . . . . 8
2019eqeq2d 2364 . . . . . . 7
2118, 20sbie 2038 . . . . . 6
2216, 21syl6bb 252 . . . . 5
2315, 22anbi12d 691 . . . 4
2413, 14, 23cbvopab1 4633 . . 3
258, 24eqtri 2373 . 2
26 df-mpt 5653 . 2
27 df-mpt 5653 . 2
2825, 26, 273eqtr4i 2383 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wceq 1642  wsb 1648   wcel 1710   F/_wnfc 2477  copab 4623   cmpt 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-mpt 5653
This theorem is referenced by:  cbvmptv  5678  fvmpts  5702  fvmpt2i  5704  fvmptex  5722
  Copyright terms: Public domain W3C validator