New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvmpt | Unicode version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
cbvmpt.1 | |
cbvmpt.2 | |
cbvmpt.3 |
Ref | Expression |
---|---|
cbvmpt |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . 4 | |
2 | nfv 1619 | . . . . 5 | |
3 | nfs1v 2106 | . . . . 5 | |
4 | 2, 3 | nfan 1824 | . . . 4 |
5 | eleq1 2413 | . . . . 5 | |
6 | sbequ12 1919 | . . . . 5 | |
7 | 5, 6 | anbi12d 691 | . . . 4 |
8 | 1, 4, 7 | cbvopab1 4632 | . . 3 |
9 | nfv 1619 | . . . . 5 | |
10 | cbvmpt.1 | . . . . . . 7 | |
11 | 10 | nfeq2 2500 | . . . . . 6 |
12 | 11 | nfsb 2109 | . . . . 5 |
13 | 9, 12 | nfan 1824 | . . . 4 |
14 | nfv 1619 | . . . 4 | |
15 | eleq1 2413 | . . . . 5 | |
16 | sbequ 2060 | . . . . . 6 | |
17 | cbvmpt.2 | . . . . . . . 8 | |
18 | 17 | nfeq2 2500 | . . . . . . 7 |
19 | cbvmpt.3 | . . . . . . . 8 | |
20 | 19 | eqeq2d 2364 | . . . . . . 7 |
21 | 18, 20 | sbie 2038 | . . . . . 6 |
22 | 16, 21 | syl6bb 252 | . . . . 5 |
23 | 15, 22 | anbi12d 691 | . . . 4 |
24 | 13, 14, 23 | cbvopab1 4632 | . . 3 |
25 | 8, 24 | eqtri 2373 | . 2 |
26 | df-mpt 5652 | . 2 | |
27 | df-mpt 5652 | . 2 | |
28 | 25, 26, 27 | 3eqtr4i 2383 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 wsb 1648 wcel 1710 wnfc 2476 copab 4622 cmpt 5651 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-addc 4378 df-nnc 4379 df-phi 4565 df-op 4566 df-opab 4623 df-mpt 5652 |
This theorem is referenced by: cbvmptv 5677 fvmpts 5701 fvmpt2i 5703 fvmptex 5721 |
Copyright terms: Public domain | W3C validator |