NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cbvmpt GIF version

Theorem cbvmpt 5677
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.)
Hypotheses
Ref Expression
cbvmpt.1 yB
cbvmpt.2 xC
cbvmpt.3 (x = yB = C)
Assertion
Ref Expression
cbvmpt (x A B) = (y A C)
Distinct variable groups:   x,A   y,A
Allowed substitution hints:   B(x,y)   C(x,y)

Proof of Theorem cbvmpt
Dummy variables z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1619 . . . 4 w(x A z = B)
2 nfv 1619 . . . . 5 x w A
3 nfs1v 2106 . . . . 5 x[w / x]z = B
42, 3nfan 1824 . . . 4 x(w A [w / x]z = B)
5 eleq1 2413 . . . . 5 (x = w → (x Aw A))
6 sbequ12 1919 . . . . 5 (x = w → (z = B ↔ [w / x]z = B))
75, 6anbi12d 691 . . . 4 (x = w → ((x A z = B) ↔ (w A [w / x]z = B)))
81, 4, 7cbvopab1 4633 . . 3 {x, z (x A z = B)} = {w, z (w A [w / x]z = B)}
9 nfv 1619 . . . . 5 y w A
10 cbvmpt.1 . . . . . . 7 yB
1110nfeq2 2501 . . . . . 6 y z = B
1211nfsb 2109 . . . . 5 y[w / x]z = B
139, 12nfan 1824 . . . 4 y(w A [w / x]z = B)
14 nfv 1619 . . . 4 w(y A z = C)
15 eleq1 2413 . . . . 5 (w = y → (w Ay A))
16 sbequ 2060 . . . . . 6 (w = y → ([w / x]z = B ↔ [y / x]z = B))
17 cbvmpt.2 . . . . . . . 8 xC
1817nfeq2 2501 . . . . . . 7 x z = C
19 cbvmpt.3 . . . . . . . 8 (x = yB = C)
2019eqeq2d 2364 . . . . . . 7 (x = y → (z = Bz = C))
2118, 20sbie 2038 . . . . . 6 ([y / x]z = Bz = C)
2216, 21syl6bb 252 . . . . 5 (w = y → ([w / x]z = Bz = C))
2315, 22anbi12d 691 . . . 4 (w = y → ((w A [w / x]z = B) ↔ (y A z = C)))
2413, 14, 23cbvopab1 4633 . . 3 {w, z (w A [w / x]z = B)} = {y, z (y A z = C)}
258, 24eqtri 2373 . 2 {x, z (x A z = B)} = {y, z (y A z = C)}
26 df-mpt 5653 . 2 (x A B) = {x, z (x A z = B)}
27 df-mpt 5653 . 2 (y A C) = {y, z (y A z = C)}
2825, 26, 273eqtr4i 2383 1 (x A B) = (y A C)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   = wceq 1642  [wsb 1648   wcel 1710  wnfc 2477  {copab 4623   cmpt 5652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-mpt 5653
This theorem is referenced by:  cbvmptv  5678  fvmpts  5702  fvmpt2i  5704  fvmptex  5722
  Copyright terms: Public domain W3C validator