New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cbvmpt | GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 11-Sep-2011.) |
Ref | Expression |
---|---|
cbvmpt.1 | ⊢ ℲyB |
cbvmpt.2 | ⊢ ℲxC |
cbvmpt.3 | ⊢ (x = y → B = C) |
Ref | Expression |
---|---|
cbvmpt | ⊢ (x ∈ A ↦ B) = (y ∈ A ↦ C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . . . 4 ⊢ Ⅎw(x ∈ A ∧ z = B) | |
2 | nfv 1619 | . . . . 5 ⊢ Ⅎx w ∈ A | |
3 | nfs1v 2106 | . . . . 5 ⊢ Ⅎx[w / x]z = B | |
4 | 2, 3 | nfan 1824 | . . . 4 ⊢ Ⅎx(w ∈ A ∧ [w / x]z = B) |
5 | eleq1 2413 | . . . . 5 ⊢ (x = w → (x ∈ A ↔ w ∈ A)) | |
6 | sbequ12 1919 | . . . . 5 ⊢ (x = w → (z = B ↔ [w / x]z = B)) | |
7 | 5, 6 | anbi12d 691 | . . . 4 ⊢ (x = w → ((x ∈ A ∧ z = B) ↔ (w ∈ A ∧ [w / x]z = B))) |
8 | 1, 4, 7 | cbvopab1 4633 | . . 3 ⊢ {〈x, z〉 ∣ (x ∈ A ∧ z = B)} = {〈w, z〉 ∣ (w ∈ A ∧ [w / x]z = B)} |
9 | nfv 1619 | . . . . 5 ⊢ Ⅎy w ∈ A | |
10 | cbvmpt.1 | . . . . . . 7 ⊢ ℲyB | |
11 | 10 | nfeq2 2501 | . . . . . 6 ⊢ Ⅎy z = B |
12 | 11 | nfsb 2109 | . . . . 5 ⊢ Ⅎy[w / x]z = B |
13 | 9, 12 | nfan 1824 | . . . 4 ⊢ Ⅎy(w ∈ A ∧ [w / x]z = B) |
14 | nfv 1619 | . . . 4 ⊢ Ⅎw(y ∈ A ∧ z = C) | |
15 | eleq1 2413 | . . . . 5 ⊢ (w = y → (w ∈ A ↔ y ∈ A)) | |
16 | sbequ 2060 | . . . . . 6 ⊢ (w = y → ([w / x]z = B ↔ [y / x]z = B)) | |
17 | cbvmpt.2 | . . . . . . . 8 ⊢ ℲxC | |
18 | 17 | nfeq2 2501 | . . . . . . 7 ⊢ Ⅎx z = C |
19 | cbvmpt.3 | . . . . . . . 8 ⊢ (x = y → B = C) | |
20 | 19 | eqeq2d 2364 | . . . . . . 7 ⊢ (x = y → (z = B ↔ z = C)) |
21 | 18, 20 | sbie 2038 | . . . . . 6 ⊢ ([y / x]z = B ↔ z = C) |
22 | 16, 21 | syl6bb 252 | . . . . 5 ⊢ (w = y → ([w / x]z = B ↔ z = C)) |
23 | 15, 22 | anbi12d 691 | . . . 4 ⊢ (w = y → ((w ∈ A ∧ [w / x]z = B) ↔ (y ∈ A ∧ z = C))) |
24 | 13, 14, 23 | cbvopab1 4633 | . . 3 ⊢ {〈w, z〉 ∣ (w ∈ A ∧ [w / x]z = B)} = {〈y, z〉 ∣ (y ∈ A ∧ z = C)} |
25 | 8, 24 | eqtri 2373 | . 2 ⊢ {〈x, z〉 ∣ (x ∈ A ∧ z = B)} = {〈y, z〉 ∣ (y ∈ A ∧ z = C)} |
26 | df-mpt 5653 | . 2 ⊢ (x ∈ A ↦ B) = {〈x, z〉 ∣ (x ∈ A ∧ z = B)} | |
27 | df-mpt 5653 | . 2 ⊢ (y ∈ A ↦ C) = {〈y, z〉 ∣ (y ∈ A ∧ z = C)} | |
28 | 25, 26, 27 | 3eqtr4i 2383 | 1 ⊢ (x ∈ A ↦ B) = (y ∈ A ↦ C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 = wceq 1642 [wsb 1648 ∈ wcel 1710 Ⅎwnfc 2477 {copab 4623 ↦ cmpt 5652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-addc 4379 df-nnc 4380 df-phi 4566 df-op 4567 df-opab 4624 df-mpt 5653 |
This theorem is referenced by: cbvmptv 5678 fvmpts 5702 fvmpt2i 5704 fvmptex 5722 |
Copyright terms: Public domain | W3C validator |