NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  clelsb1 Unicode version

Theorem clelsb1 2455
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2103). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem clelsb1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfv 1619 . . 3  F/
21sbco2 2086 . 2
3 nfv 1619 . . . 4  F/
4 eleq1 2413 . . . 4
53, 4sbie 2038 . . 3
65sbbii 1653 . 2
7 nfv 1619 . . 3  F/
8 eleq1 2413 . . 3
97, 8sbie 2038 . 2
102, 6, 93bitr3i 266 1
Colors of variables: wff setvar class
Syntax hints:   wb 176  wsb 1648   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349
This theorem is referenced by:  hblem  2458  cbvreu  2834  sbcel1gv  3106  rmo3  3134
  Copyright terms: Public domain W3C validator