NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  clelsb1 GIF version

Theorem clelsb1 2455
Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2103). (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
clelsb1 ([y / x]x Ay A)
Distinct variable group:   x,A
Allowed substitution hint:   A(y)

Proof of Theorem clelsb1
Dummy variable w is distinct from all other variables.
StepHypRef Expression
1 nfv 1619 . . 3 x w A
21sbco2 2086 . 2 ([y / x][x / w]w A ↔ [y / w]w A)
3 nfv 1619 . . . 4 w x A
4 eleq1 2413 . . . 4 (w = x → (w Ax A))
53, 4sbie 2038 . . 3 ([x / w]w Ax A)
65sbbii 1653 . 2 ([y / x][x / w]w A ↔ [y / x]x A)
7 nfv 1619 . . 3 w y A
8 eleq1 2413 . . 3 (w = y → (w Ay A))
97, 8sbie 2038 . 2 ([y / w]w Ay A)
102, 6, 93bitr3i 266 1 ([y / x]x Ay A)
Colors of variables: wff setvar class
Syntax hints:  wb 176  [wsb 1648   wcel 1710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346  df-clel 2349
This theorem is referenced by:  hblem  2458  cbvreu  2834  sbcel1gv  3106  rmo3  3134
  Copyright terms: Public domain W3C validator