NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqsb1 Unicode version

Theorem eqsb1 2454
Description: Substitution for the left-hand side in an equality. Class version of equsb3 2102. (Contributed by Rodolfo Medina, 28-Apr-2010.)
Assertion
Ref Expression
eqsb1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem eqsb1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 eqsb1lem 2453 . . 3
21sbbii 1653 . 2
3 nfv 1619 . . 3  F/
43sbco2 2086 . 2
5 eqsb1lem 2453 . 2
62, 4, 53bitr3i 266 1
Colors of variables: wff setvar class
Syntax hints:   wb 176   wceq 1642  wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-cleq 2346
This theorem is referenced by:  pm13.183  2980  eqsbc1  3086
  Copyright terms: Public domain W3C validator