New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > cnvkxpk | Unicode version |
Description: The converse of a Kuratowski cross product. (Contributed by SF, 13-Jan-2015.) |
Ref | Expression |
---|---|
cnvkxpk | k k k |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvkssvvk 4275 | . 2 k k k | |
2 | xpkssvvk 4210 | . 2 k k | |
3 | ancom 437 | . . 3 | |
4 | vex 2862 | . . . . 5 | |
5 | vex 2862 | . . . . 5 | |
6 | 4, 5 | opkelcnvk 4250 | . . . 4 k k k |
7 | 5, 4 | opkelxpk 4248 | . . . 4 k |
8 | 6, 7 | bitri 240 | . . 3 k k |
9 | 4, 5 | opkelxpk 4248 | . . 3 k |
10 | 3, 8, 9 | 3bitr4i 268 | . 2 k k k |
11 | 1, 2, 10 | eqrelkriiv 4213 | 1 k k k |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wceq 1642 wcel 1710 copk 4057 k cxpk 4174 kccnvk 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-sn 3741 df-pr 3742 df-opk 4058 df-xpk 4185 df-cnvk 4186 |
This theorem is referenced by: xpkexg 4288 |
Copyright terms: Public domain | W3C validator |