| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > xpkexg | Unicode version | ||
| Description: The Kuratowski cross product of two sets is a set. (Contributed by SF, 13-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| xpkexg | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cnvkxpk 4277 | 
. . 3
 | |
| 2 | xpkvexg 4286 | 
. . . 4
 | |
| 3 | cnvkexg 4287 | 
. . . 4
 | |
| 4 | 2, 3 | syl 15 | 
. . 3
 | 
| 5 | 1, 4 | syl5eqelr 2438 | 
. 2
 | 
| 6 | xpkvexg 4286 | 
. 2
 | |
| 7 | inxpk 4278 | 
. . . 4
 | |
| 8 | inv1 3578 | 
. . . . 5
 | |
| 9 | incom 3449 | 
. . . . . 6
 | |
| 10 | inv1 3578 | 
. . . . . 6
 | |
| 11 | 9, 10 | eqtri 2373 | 
. . . . 5
 | 
| 12 | 8, 11 | xpkeq12i 4204 | 
. . . 4
 | 
| 13 | 7, 12 | eqtri 2373 | 
. . 3
 | 
| 14 | inexg 4101 | 
. . 3
 | |
| 15 | 13, 14 | syl5eqelr 2438 | 
. 2
 | 
| 16 | 5, 6, 15 | syl2an 463 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-cnvk 4187 | 
| This theorem is referenced by: xpkex 4290 uni1exg 4293 imakexg 4300 pw1exg 4303 pwexg 4329 | 
| Copyright terms: Public domain | W3C validator |