NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  xpkexg Unicode version

Theorem xpkexg 4289
Description: The Kuratowski cross product of two sets is a set. (Contributed by SF, 13-Jan-2015.)
Assertion
Ref Expression
xpkexg k

Proof of Theorem xpkexg
StepHypRef Expression
1 cnvkxpk 4277 . . 3 k k k
2 xpkvexg 4286 . . . 4 k
3 cnvkexg 4287 . . . 4 k k k
42, 3syl 15 . . 3 k k
51, 4syl5eqelr 2438 . 2 k
6 xpkvexg 4286 . 2 k
7 inxpk 4278 . . . 4 k k k
8 inv1 3578 . . . . 5
9 incom 3449 . . . . . 6
10 inv1 3578 . . . . . 6
119, 10eqtri 2373 . . . . 5
128, 11xpkeq12i 4204 . . . 4 k k
137, 12eqtri 2373 . . 3 k k k
14 inexg 4101 . . 3 k k k k
1513, 14syl5eqelr 2438 . 2 k k k
165, 6, 15syl2an 463 1 k
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wcel 1710  cvv 2860   cin 3209   k cxpk 4175  kccnvk 4176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-opk 4059  df-xpk 4186  df-cnvk 4187
This theorem is referenced by:  xpkex  4290  uni1exg  4293  imakexg  4300  pw1exg  4303  pwexg  4329
  Copyright terms: Public domain W3C validator