| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > csbhypf | Unicode version | ||
| Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf 2905 for class substitution version. (Contributed by NM, 19-Dec-2008.) |
| Ref | Expression |
|---|---|
| csbhypf.1 |
|
| csbhypf.2 |
|
| csbhypf.3 |
|
| Ref | Expression |
|---|---|
| csbhypf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csbhypf.1 |
. . . 4
| |
| 2 | 1 | nfeq2 2501 |
. . 3
|
| 3 | nfcsb1v 3169 |
. . . 4
| |
| 4 | csbhypf.2 |
. . . 4
| |
| 5 | 3, 4 | nfeq 2497 |
. . 3
|
| 6 | 2, 5 | nfim 1813 |
. 2
|
| 7 | eqeq1 2359 |
. . 3
| |
| 8 | csbeq1a 3145 |
. . . 4
| |
| 9 | 8 | eqeq1d 2361 |
. . 3
|
| 10 | 7, 9 | imbi12d 311 |
. 2
|
| 11 | csbhypf.3 |
. 2
| |
| 12 | 6, 10, 11 | chvar 1986 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-sbc 3048 df-csb 3138 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |