New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nfim | Unicode version |
Description: If is not free in and , it is not free in . (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 2-Jan-2018.) |
Ref | Expression |
---|---|
nfim.1 | |
nfim.2 |
Ref | Expression |
---|---|
nfim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfim.1 | . 2 | |
2 | nfim.2 | . . 3 | |
3 | 2 | a1i 10 | . 2 |
4 | 1, 3 | nfim1 1811 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wnf 1544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-nf 1545 |
This theorem is referenced by: nfanOLD 1826 nfbiOLD 1835 nfor 1836 nfnf 1845 nfia1 1856 19.38OLD 1874 nfmo1 2215 mo 2226 moexex 2273 2mo 2282 2eu4 2287 2eu6 2289 cbvralf 2830 vtocl2gf 2917 vtocl3gf 2918 vtoclgaf 2920 vtocl2gaf 2922 vtocl3gaf 2924 rspct 2949 rspc 2950 ralab2 3002 mob 3019 csbhypf 3172 cbvralcsf 3199 dfss2f 3265 elintab 3938 fv3 5342 tz6.12c 5348 dff13f 5473 ov3 5600 fvmptss 5706 ov2gf 5712 fvmptf 5723 |
Copyright terms: Public domain | W3C validator |