NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sbhypf Unicode version

Theorem sbhypf 2905
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3172. (Contributed by Raph Levien, 10-Apr-2004.)
Hypotheses
Ref Expression
sbhypf.1  F/
sbhypf.2
Assertion
Ref Expression
sbhypf
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   (,)   ()

Proof of Theorem sbhypf
StepHypRef Expression
1 vex 2863 . . 3
2 eqeq1 2359 . . 3
31, 2ceqsexv 2895 . 2
4 nfs1v 2106 . . . 4  F/
5 sbhypf.1 . . . 4  F/
64, 5nfbi 1834 . . 3  F/
7 sbequ12 1919 . . . . 5
87bicomd 192 . . . 4
9 sbhypf.2 . . . 4
108, 9sylan9bb 680 . . 3
116, 10exlimi 1803 . 2
123, 11sylbir 204 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wex 1541   F/wnf 1544   wceq 1642  wsb 1648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-v 2862
This theorem is referenced by:  mob2  3017  ralxpf  4828
  Copyright terms: Public domain W3C validator