New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sbhypf | Unicode version |
Description: Introduce an explicit substitution into an implicit substitution hypothesis. See also csbhypf 3172. (Contributed by Raph Levien, 10-Apr-2004.) |
Ref | Expression |
---|---|
sbhypf.1 | |
sbhypf.2 |
Ref | Expression |
---|---|
sbhypf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . 3 | |
2 | eqeq1 2359 | . . 3 | |
3 | 1, 2 | ceqsexv 2895 | . 2 |
4 | nfs1v 2106 | . . . 4 | |
5 | sbhypf.1 | . . . 4 | |
6 | 4, 5 | nfbi 1834 | . . 3 |
7 | sbequ12 1919 | . . . . 5 | |
8 | 7 | bicomd 192 | . . . 4 |
9 | sbhypf.2 | . . . 4 | |
10 | 8, 9 | sylan9bb 680 | . . 3 |
11 | 6, 10 | exlimi 1803 | . 2 |
12 | 3, 11 | sylbir 204 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wa 358 wex 1541 wnf 1544 wceq 1642 wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-v 2862 |
This theorem is referenced by: mob2 3017 ralxpf 4828 |
Copyright terms: Public domain | W3C validator |