NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbieb Unicode version

Theorem csbieb 3175
Description: Bidirectional conversion between an implicit class substitution hypothesis and its explicit substitution equivalent. (Contributed by NM, 2-Mar-2008.)
Hypotheses
Ref Expression
csbieb.1
csbieb.2  F/_
Assertion
Ref Expression
csbieb
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem csbieb
StepHypRef Expression
1 csbieb.1 . 2
2 csbieb.2 . 2  F/_
3 csbiebt 3173 . 2  F/_
41, 2, 3mp2an 653 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176  wal 1540   wceq 1642   wcel 1710   F/_wnfc 2477  cvv 2860  csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbiebg  3176
  Copyright terms: Public domain W3C validator