NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbnestgf Unicode version

Theorem csbnestgf 3185
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.)
Assertion
Ref Expression
csbnestgf  F/_

Proof of Theorem csbnestgf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elex 2868 . . 3
2 df-csb 3138 . . . . . . 7  [.  ].
32abeq2i 2461 . . . . . 6  [.  ].
43sbcbii 3102 . . . . 5  [.  ].  [.  ]. [.  ].
5 nfcr 2482 . . . . . . 7  F/_  F/
65alimi 1559 . . . . . 6  F/_  F/
7 sbcnestgf 3184 . . . . . 6  F/  [.  ].
[.  ].  [.  ].
86, 7sylan2 460 . . . . 5  F/_  [.  ]. [.  ].  [.  ].
94, 8syl5bb 248 . . . 4  F/_  [.  ].  [.  ].
109abbidv 2468 . . 3  F/_  [.  ].  [.  ].
111, 10sylan 457 . 2  F/_  [.  ].  [.  ].
12 df-csb 3138 . 2  [.  ].
13 df-csb 3138 . 2  [.  ].
1411, 12, 133eqtr4g 2410 1  F/_
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358  wal 1540   F/wnf 1544   wceq 1642   wcel 1710  cab 2339   F/_wnfc 2477  cvv 2860   [.wsbc 3047  csb 3137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048  df-csb 3138
This theorem is referenced by:  csbnestg  3187  csbnest1g  3189
  Copyright terms: Public domain W3C validator