New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbnestgf | GIF version |
Description: Nest the composition of two substitutions. (Contributed by NM, 23-Nov-2005.) (Proof shortened by Mario Carneiro, 10-Nov-2016.) |
Ref | Expression |
---|---|
csbnestgf | ⊢ ((A ∈ V ∧ ∀yℲxC) → [A / x][B / y]C = [[A / x]B / y]C) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . . 3 ⊢ (A ∈ V → A ∈ V) | |
2 | df-csb 3138 | . . . . . . 7 ⊢ [B / y]C = {z ∣ [̣B / y]̣z ∈ C} | |
3 | 2 | abeq2i 2461 | . . . . . 6 ⊢ (z ∈ [B / y]C ↔ [̣B / y]̣z ∈ C) |
4 | 3 | sbcbii 3102 | . . . . 5 ⊢ ([̣A / x]̣z ∈ [B / y]C ↔ [̣A / x]̣[̣B / y]̣z ∈ C) |
5 | nfcr 2482 | . . . . . . 7 ⊢ (ℲxC → Ⅎx z ∈ C) | |
6 | 5 | alimi 1559 | . . . . . 6 ⊢ (∀yℲxC → ∀yℲx z ∈ C) |
7 | sbcnestgf 3184 | . . . . . 6 ⊢ ((A ∈ V ∧ ∀yℲx z ∈ C) → ([̣A / x]̣[̣B / y]̣z ∈ C ↔ [̣[A / x]B / y]̣z ∈ C)) | |
8 | 6, 7 | sylan2 460 | . . . . 5 ⊢ ((A ∈ V ∧ ∀yℲxC) → ([̣A / x]̣[̣B / y]̣z ∈ C ↔ [̣[A / x]B / y]̣z ∈ C)) |
9 | 4, 8 | syl5bb 248 | . . . 4 ⊢ ((A ∈ V ∧ ∀yℲxC) → ([̣A / x]̣z ∈ [B / y]C ↔ [̣[A / x]B / y]̣z ∈ C)) |
10 | 9 | abbidv 2468 | . . 3 ⊢ ((A ∈ V ∧ ∀yℲxC) → {z ∣ [̣A / x]̣z ∈ [B / y]C} = {z ∣ [̣[A / x]B / y]̣z ∈ C}) |
11 | 1, 10 | sylan 457 | . 2 ⊢ ((A ∈ V ∧ ∀yℲxC) → {z ∣ [̣A / x]̣z ∈ [B / y]C} = {z ∣ [̣[A / x]B / y]̣z ∈ C}) |
12 | df-csb 3138 | . 2 ⊢ [A / x][B / y]C = {z ∣ [̣A / x]̣z ∈ [B / y]C} | |
13 | df-csb 3138 | . 2 ⊢ [[A / x]B / y]C = {z ∣ [̣[A / x]B / y]̣z ∈ C} | |
14 | 11, 12, 13 | 3eqtr4g 2410 | 1 ⊢ ((A ∈ V ∧ ∀yℲxC) → [A / x][B / y]C = [[A / x]B / y]C) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 Vcvv 2860 [̣wsbc 3047 [csb 3137 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 |
This theorem is referenced by: csbnestg 3187 csbnest1g 3189 |
Copyright terms: Public domain | W3C validator |