New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  csbsng Unicode version

Theorem csbsng 3785
 Description: Distribute proper substitution through the singleton of a class. csbsng 3785 is derived from the virtual deduction proof csbsngVD in set.mm. (Contributed by Alan Sare, 10-Nov-2012.)
Assertion
Ref Expression
csbsng

Proof of Theorem csbsng
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 csbabg 3197 . . 3
2 sbceq2g 3158 . . . 4
32abbidv 2467 . . 3
41, 3eqtrd 2385 . 2
5 df-sn 3741 . . 3
65csbeq2i 3162 . 2
7 df-sn 3741 . 2
84, 6, 73eqtr4g 2410 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wceq 1642   wcel 1710  cab 2339  wsbc 3046  csb 3136  csn 3737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-sbc 3047  df-csb 3137  df-sn 3741 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator