New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > csbsng | GIF version |
Description: Distribute proper substitution through the singleton of a class. csbsng 3786 is derived from the virtual deduction proof csbsngVD in set.mm. (Contributed by Alan Sare, 10-Nov-2012.) |
Ref | Expression |
---|---|
csbsng | ⊢ (A ∈ V → [A / x]{B} = {[A / x]B}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbabg 3198 | . . 3 ⊢ (A ∈ V → [A / x]{y ∣ y = B} = {y ∣ [̣A / x]̣y = B}) | |
2 | sbceq2g 3159 | . . . 4 ⊢ (A ∈ V → ([̣A / x]̣y = B ↔ y = [A / x]B)) | |
3 | 2 | abbidv 2468 | . . 3 ⊢ (A ∈ V → {y ∣ [̣A / x]̣y = B} = {y ∣ y = [A / x]B}) |
4 | 1, 3 | eqtrd 2385 | . 2 ⊢ (A ∈ V → [A / x]{y ∣ y = B} = {y ∣ y = [A / x]B}) |
5 | df-sn 3742 | . . 3 ⊢ {B} = {y ∣ y = B} | |
6 | 5 | csbeq2i 3163 | . 2 ⊢ [A / x]{B} = [A / x]{y ∣ y = B} |
7 | df-sn 3742 | . 2 ⊢ {[A / x]B} = {y ∣ y = [A / x]B} | |
8 | 4, 6, 7 | 3eqtr4g 2410 | 1 ⊢ (A ∈ V → [A / x]{B} = {[A / x]B}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {cab 2339 [̣wsbc 3047 [csb 3137 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-sbc 3048 df-csb 3138 df-sn 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |