NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df-frec Unicode version

Definition df-frec 6311
Description: Define the finite recursive function generator. This is a function over Nn that obeys the standard recursion relationship. Definition adapted from theorem XI.3.24 of [Rosser] p. 412. (Contributed by Scott Fenton, 30-Jul-2019.)
Assertion
Ref Expression
df-frec FRec Clos1 0c PProd 1c
Distinct variable groups:   ,   ,

Detailed syntax breakdown of Definition df-frec
StepHypRef Expression
1 cF . . 3
2 cI . . 3
31, 2cfrec 6310 . 2 FRec
4 c0c 4375 . . . . 5 0c
54, 2cop 4562 . . . 4 0c
65csn 3738 . . 3 0c
7 vx . . . . 5
8 cvv 2860 . . . . 5
97cv 1641 . . . . . 6
10 c1c 4135 . . . . . 6 1c
119, 10cplc 4376 . . . . 5 1c
127, 8, 11cmpt 5652 . . . 4 1c
1312, 1cpprod 5738 . . 3 PProd 1c
146, 13cclos1 5873 . 2 Clos1 0c PProd 1c
153, 14wceq 1642 1 FRec Clos1 0c PProd 1c
Colors of variables: wff setvar class
This definition is referenced by:  freceq12  6312  frecexg  6313  frecxp  6315  dmfrec  6317  fnfreclem2  6319  fnfreclem3  6320  frec0  6322  frecsuc  6323
  Copyright terms: Public domain W3C validator