New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > frecsuc | Unicode version |
Description: Calculate the value of the finite recursive function generator at a successor. (Contributed by Scott Fenton, 31-Jul-2019.) |
Ref | Expression |
---|---|
frecsuc.1 | FRec |
frecsuc.2 | Funs |
frecsuc.3 | |
frecsuc.4 | |
frecsuc.5 | Nn |
Ref | Expression |
---|---|
frecsuc | 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frecsuc.1 | . . . . . . . 8 FRec | |
2 | frecsuc.2 | . . . . . . . 8 Funs | |
3 | frecsuc.3 | . . . . . . . 8 | |
4 | frecsuc.4 | . . . . . . . 8 | |
5 | 1, 2, 3, 4 | fnfrec 6321 | . . . . . . 7 Nn |
6 | fnfun 5182 | . . . . . . 7 Nn | |
7 | 5, 6 | syl 15 | . . . . . 6 |
8 | frecsuc.5 | . . . . . . 7 Nn | |
9 | 1, 2, 3, 4 | dmfrec 6317 | . . . . . . 7 Nn |
10 | 8, 9 | eleqtrrd 2430 | . . . . . 6 |
11 | funfvop 5401 | . . . . . 6 | |
12 | 7, 10, 11 | syl2anc 642 | . . . . 5 |
13 | eqid 2353 | . . . . . 6 1c 1c | |
14 | peano2 4404 | . . . . . . . 8 Nn 1c Nn | |
15 | 8, 14 | syl 15 | . . . . . . 7 1c Nn |
16 | addceq1 4384 | . . . . . . . . 9 1c 1c | |
17 | 16 | eqeq2d 2364 | . . . . . . . 8 1c 1c |
18 | eqeq1 2359 | . . . . . . . 8 1c 1c 1c 1c | |
19 | mptv 5719 | . . . . . . . 8 1c 1c | |
20 | 17, 18, 19 | brabg 4707 | . . . . . . 7 Nn 1c Nn 1c 1c 1c 1c |
21 | 8, 15, 20 | syl2anc 642 | . . . . . 6 1c 1c 1c 1c |
22 | 13, 21 | mpbiri 224 | . . . . 5 1c 1c |
23 | elfunsi 5832 | . . . . . . . 8 Funs | |
24 | 2, 23 | syl 15 | . . . . . . 7 |
25 | 3 | snssd 3854 | . . . . . . . . 9 |
26 | 4, 25 | unssd 3440 | . . . . . . . 8 |
27 | 1 | frecxpg 6316 | . . . . . . . . . . . 12 Funs Nn |
28 | 2, 27 | syl 15 | . . . . . . . . . . 11 Nn |
29 | rnss 4960 | . . . . . . . . . . 11 Nn Nn | |
30 | 28, 29 | syl 15 | . . . . . . . . . 10 Nn |
31 | rnxpss 5054 | . . . . . . . . . 10 Nn | |
32 | 30, 31 | syl6ss 3285 | . . . . . . . . 9 |
33 | fvelrn 5414 | . . . . . . . . . 10 | |
34 | 7, 10, 33 | syl2anc 642 | . . . . . . . . 9 |
35 | 32, 34 | sseldd 3275 | . . . . . . . 8 |
36 | 26, 35 | sseldd 3275 | . . . . . . 7 |
37 | funfvop 5401 | . . . . . . 7 | |
38 | 24, 36, 37 | syl2anc 642 | . . . . . 6 |
39 | df-br 4641 | . . . . . 6 | |
40 | 38, 39 | sylibr 203 | . . . . 5 |
41 | breq1 4643 | . . . . . . 7 PProd 1c 1c PProd 1c 1c | |
42 | qrpprod 5837 | . . . . . . 7 PProd 1c 1c 1c 1c | |
43 | 41, 42 | syl6bb 252 | . . . . . 6 PProd 1c 1c 1c 1c |
44 | 43 | rspcev 2956 | . . . . 5 1c 1c PProd 1c 1c |
45 | 12, 22, 40, 44 | syl12anc 1180 | . . . 4 PProd 1c 1c |
46 | 45 | olcd 382 | . . 3 1c 0c PProd 1c 1c |
47 | snex 4112 | . . . 4 0c | |
48 | csucex 6260 | . . . . 5 1c | |
49 | pprodexg 5838 | . . . . 5 1c Funs PProd 1c | |
50 | 48, 2, 49 | sylancr 644 | . . . 4 PProd 1c |
51 | df-frec 6311 | . . . . . 6 FRec Clos1 0c PProd 1c | |
52 | 1, 51 | eqtri 2373 | . . . . 5 Clos1 0c PProd 1c |
53 | 52 | clos1basesucg 5885 | . . . 4 0c PProd 1c 1c 1c 0c PProd 1c 1c |
54 | 47, 50, 53 | sylancr 644 | . . 3 1c 1c 0c PProd 1c 1c |
55 | 46, 54 | mpbird 223 | . 2 1c |
56 | fnopfvb 5360 | . . 3 Nn 1c Nn 1c 1c | |
57 | 5, 15, 56 | syl2anc 642 | . 2 1c 1c |
58 | 55, 57 | mpbird 223 | 1 1c |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wb 176 wo 357 wa 358 wceq 1642 wcel 1710 wrex 2616 cvv 2860 cun 3208 wss 3258 csn 3738 1cc1c 4135 Nn cnnc 4374 0cc0c 4375 cplc 4376 cop 4562 class class class wbr 4640 cxp 4771 cdm 4773 crn 4774 wfun 4776 wfn 4777 cfv 4782 cmpt 5652 PProd cpprod 5738 Funs cfuns 5760 Clos1 cclos1 5873 FRec cfrec 6310 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-csb 3138 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-iun 3972 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-fo 4794 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-pprod 5739 df-fix 5741 df-cup 5743 df-disj 5745 df-addcfn 5747 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-clos1 5874 df-frec 6311 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |