New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df-frec | GIF version |
Description: Define the finite recursive function generator. This is a function over Nn that obeys the standard recursion relationship. Definition adapted from theorem XI.3.24 of [Rosser] p. 412. (Contributed by Scott Fenton, 30-Jul-2019.) |
Ref | Expression |
---|---|
df-frec | ⊢ FRec (F, I) = Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cF | . . 3 class F | |
2 | cI | . . 3 class I | |
3 | 1, 2 | cfrec 6310 | . 2 class FRec (F, I) |
4 | c0c 4375 | . . . . 5 class 0c | |
5 | 4, 2 | cop 4562 | . . . 4 class 〈0c, I〉 |
6 | 5 | csn 3738 | . . 3 class {〈0c, I〉} |
7 | vx | . . . . 5 setvar x | |
8 | cvv 2860 | . . . . 5 class V | |
9 | 7 | cv 1641 | . . . . . 6 class x |
10 | c1c 4135 | . . . . . 6 class 1c | |
11 | 9, 10 | cplc 4376 | . . . . 5 class (x +c 1c) |
12 | 7, 8, 11 | cmpt 5652 | . . . 4 class (x ∈ V ↦ (x +c 1c)) |
13 | 12, 1 | cpprod 5738 | . . 3 class PProd ((x ∈ V ↦ (x +c 1c)), F) |
14 | 6, 13 | cclos1 5873 | . 2 class Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) |
15 | 3, 14 | wceq 1642 | 1 wff FRec (F, I) = Clos1 ({〈0c, I〉}, PProd ((x ∈ V ↦ (x +c 1c)), F)) |
Colors of variables: wff setvar class |
This definition is referenced by: freceq12 6312 frecexg 6313 frecxp 6315 dmfrec 6317 fnfreclem2 6319 fnfreclem3 6320 frec0 6322 frecsuc 6323 |
Copyright terms: Public domain | W3C validator |