NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  freceq12 Unicode version

Theorem freceq12 6312
Description: Equality theorem for finite recursive function generator. (Contributed by Scott Fenton, 31-Jul-2019.)
Assertion
Ref Expression
freceq12 FRec FRec

Proof of Theorem freceq12
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 opeq2 4580 . . . . 5 0c 0c
21sneqd 3747 . . . 4 0c 0c
3 clos1eq1 5875 . . . 4 0c 0c Clos1 0c PProd 1c Clos1 0c PProd 1c
42, 3syl 15 . . 3 Clos1 0c PProd 1c Clos1 0c PProd 1c
5 pprodeq2 5836 . . . 4 PProd 1c PProd 1c
6 clos1eq2 5876 . . . 4 PProd 1c PProd 1c Clos1 0c PProd 1c Clos1 0c PProd 1c
75, 6syl 15 . . 3 Clos1 0c PProd 1c Clos1 0c PProd 1c
84, 7sylan9eqr 2407 . 2 Clos1 0c PProd 1c Clos1 0c PProd 1c
9 df-frec 6311 . 2 FRec Clos1 0c PProd 1c
10 df-frec 6311 . 2 FRec Clos1 0c PProd 1c
118, 9, 103eqtr4g 2410 1 FRec FRec
Colors of variables: wff setvar class
Syntax hints:   wi 4   wa 358   wceq 1642  cvv 2860  csn 3738  1cc1c 4135  0cc0c 4375   cplc 4376  cop 4562   cmpt 5652   PProd cpprod 5738   Clos1 cclos1 5873   FRec cfrec 6310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-br 4641  df-co 4727  df-ima 4728  df-txp 5737  df-pprod 5739  df-clos1 5874  df-frec 6311
This theorem is referenced by:  frecxp  6315  frecxpg  6316
  Copyright terms: Public domain W3C validator