| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > fundmen | Unicode version | ||
| Description: A function is equinumerous to its domain. Exercise 4 of [Suppes] p. 98. (Contributed by SF, 23-Feb-2015.) | 
| Ref | Expression | 
|---|---|
| fundmen.1 | 
 | 
| Ref | Expression | 
|---|---|
| fundmen | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssv 3292 | 
. . . . . 6
 | |
| 2 | 1stfo 5506 | 
. . . . . . 7
 | |
| 3 | fofn 5272 | 
. . . . . . 7
 | |
| 4 | fnssresb 5196 | 
. . . . . . 7
 | |
| 5 | 2, 3, 4 | mp2b 9 | 
. . . . . 6
 | 
| 6 | 1, 5 | mpbir 200 | 
. . . . 5
 | 
| 7 | 6 | a1i 10 | 
. . . 4
 | 
| 8 | brcnv 4893 | 
. . . . . . . . . . 11
 | |
| 9 | brres 4950 | 
. . . . . . . . . . 11
 | |
| 10 | vex 2863 | 
. . . . . . . . . . . . . 14
 | |
| 11 | 10 | br1st 4859 | 
. . . . . . . . . . . . 13
 | 
| 12 | 11 | anbi1i 676 | 
. . . . . . . . . . . 12
 | 
| 13 | 19.41v 1901 | 
. . . . . . . . . . . 12
 | |
| 14 | 12, 13 | bitr4i 243 | 
. . . . . . . . . . 11
 | 
| 15 | 8, 9, 14 | 3bitri 262 | 
. . . . . . . . . 10
 | 
| 16 | brcnv 4893 | 
. . . . . . . . . . . 12
 | |
| 17 | brres 4950 | 
. . . . . . . . . . . 12
 | |
| 18 | 10 | br1st 4859 | 
. . . . . . . . . . . . 13
 | 
| 19 | 18 | anbi1i 676 | 
. . . . . . . . . . . 12
 | 
| 20 | 16, 17, 19 | 3bitri 262 | 
. . . . . . . . . . 11
 | 
| 21 | 19.41v 1901 | 
. . . . . . . . . . 11
 | |
| 22 | 20, 21 | bitr4i 243 | 
. . . . . . . . . 10
 | 
| 23 | 15, 22 | anbi12i 678 | 
. . . . . . . . 9
 | 
| 24 | eeanv 1913 | 
. . . . . . . . 9
 | |
| 25 | 23, 24 | bitr4i 243 | 
. . . . . . . 8
 | 
| 26 | an4 797 | 
. . . . . . . . . 10
 | |
| 27 | dffun4 5122 | 
. . . . . . . . . . . . 13
 | |
| 28 | sp 1747 | 
. . . . . . . . . . . . . . 15
 | |
| 29 | 28 | sps 1754 | 
. . . . . . . . . . . . . 14
 | 
| 30 | 29 | sps 1754 | 
. . . . . . . . . . . . 13
 | 
| 31 | 27, 30 | sylbi 187 | 
. . . . . . . . . . . 12
 | 
| 32 | opeq2 4580 | 
. . . . . . . . . . . 12
 | |
| 33 | 31, 32 | syl6 29 | 
. . . . . . . . . . 11
 | 
| 34 | eleq1 2413 | 
. . . . . . . . . . . . . . 15
 | |
| 35 | eleq1 2413 | 
. . . . . . . . . . . . . . 15
 | |
| 36 | 34, 35 | bi2anan9 843 | 
. . . . . . . . . . . . . 14
 | 
| 37 | eqeq12 2365 | 
. . . . . . . . . . . . . 14
 | |
| 38 | 36, 37 | imbi12d 311 | 
. . . . . . . . . . . . 13
 | 
| 39 | 38 | biimprcd 216 | 
. . . . . . . . . . . 12
 | 
| 40 | 39 | imp3a 420 | 
. . . . . . . . . . 11
 | 
| 41 | 33, 40 | syl 15 | 
. . . . . . . . . 10
 | 
| 42 | 26, 41 | syl5bi 208 | 
. . . . . . . . 9
 | 
| 43 | 42 | exlimdvv 1637 | 
. . . . . . . 8
 | 
| 44 | 25, 43 | syl5bi 208 | 
. . . . . . 7
 | 
| 45 | 44 | alrimiv 1631 | 
. . . . . 6
 | 
| 46 | 45 | alrimivv 1632 | 
. . . . 5
 | 
| 47 | dffun2 5120 | 
. . . . 5
 | |
| 48 | 46, 47 | sylibr 203 | 
. . . 4
 | 
| 49 | dfdm4 5508 | 
. . . . . 6
 | |
| 50 | dfima3 4952 | 
. . . . . 6
 | |
| 51 | 49, 50 | eqtr2i 2374 | 
. . . . 5
 | 
| 52 | 51 | a1i 10 | 
. . . 4
 | 
| 53 | dff1o2 5292 | 
. . . 4
 | |
| 54 | 7, 48, 52, 53 | syl3anbrc 1136 | 
. . 3
 | 
| 55 | 1stex 4740 | 
. . . . 5
 | |
| 56 | fundmen.1 | 
. . . . 5
 | |
| 57 | 55, 56 | resex 5118 | 
. . . 4
 | 
| 58 | 57 | f1oen 6034 | 
. . 3
 | 
| 59 | 54, 58 | syl 15 | 
. 2
 | 
| 60 | ensym 6038 | 
. 2
 | |
| 61 | 59, 60 | sylib 188 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-co 4727 df-ima 4728 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-2nd 4798 df-en 6030 | 
| This theorem is referenced by: fundmeng 6045 xpsnen 6050 | 
| Copyright terms: Public domain | W3C validator |