New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfif5 | Unicode version |
Description: Alternate definition of the conditional operator df-if 3664. Note that is independent of i.e. a constant true or false (see also abvor0 3568). (Contributed by Gérard Lang, 18-Aug-2013.) |
Ref | Expression |
---|---|
dfif3.1 |
Ref | Expression |
---|---|
dfif5 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inindi 3473 | . 2 | |
2 | dfif3.1 | . . 3 | |
3 | 2 | dfif4 3674 | . 2 |
4 | undir 3505 | . . 3 | |
5 | unidm 3408 | . . . . . . . 8 | |
6 | 5 | uneq1i 3415 | . . . . . . 7 |
7 | unass 3421 | . . . . . . 7 | |
8 | undi 3503 | . . . . . . 7 | |
9 | 6, 7, 8 | 3eqtr3ri 2382 | . . . . . 6 |
10 | undi 3503 | . . . . . . . 8 | |
11 | undifabs 3628 | . . . . . . . . . 10 | |
12 | 11 | ineq1i 3454 | . . . . . . . . 9 |
13 | inabs 3487 | . . . . . . . . 9 | |
14 | 12, 13 | eqtri 2373 | . . . . . . . 8 |
15 | 10, 14 | eqtri 2373 | . . . . . . 7 |
16 | undif2 3627 | . . . . . . . . 9 | |
17 | 16 | ineq1i 3454 | . . . . . . . 8 |
18 | undi 3503 | . . . . . . . 8 | |
19 | 17, 18, 8 | 3eqtr4i 2383 | . . . . . . 7 |
20 | 15, 19 | uneq12i 3417 | . . . . . 6 |
21 | 9, 20 | eqtr4i 2376 | . . . . 5 |
22 | unundi 3425 | . . . . 5 | |
23 | 21, 22 | eqtr4i 2376 | . . . 4 |
24 | unass 3421 | . . . . . 6 | |
25 | undi 3503 | . . . . . . . . 9 | |
26 | uncom 3409 | . . . . . . . . 9 | |
27 | undif2 3627 | . . . . . . . . . 10 | |
28 | 27 | ineq1i 3454 | . . . . . . . . 9 |
29 | 25, 26, 28 | 3eqtr4i 2383 | . . . . . . . 8 |
30 | undi 3503 | . . . . . . . 8 | |
31 | 29, 30 | eqtr4i 2376 | . . . . . . 7 |
32 | undi 3503 | . . . . . . . 8 | |
33 | undifabs 3628 | . . . . . . . . 9 | |
34 | 33 | ineq1i 3454 | . . . . . . . 8 |
35 | inabs 3487 | . . . . . . . 8 | |
36 | 32, 34, 35 | 3eqtrri 2378 | . . . . . . 7 |
37 | 31, 36 | uneq12i 3417 | . . . . . 6 |
38 | unidm 3408 | . . . . . . 7 | |
39 | 38 | uneq2i 3416 | . . . . . 6 |
40 | 24, 37, 39 | 3eqtr3ri 2382 | . . . . 5 |
41 | uncom 3409 | . . . . . . 7 | |
42 | 41 | ineq2i 3455 | . . . . . 6 |
43 | undir 3505 | . . . . . 6 | |
44 | 42, 43 | eqtr4i 2376 | . . . . 5 |
45 | unundi 3425 | . . . . 5 | |
46 | 40, 44, 45 | 3eqtr4i 2383 | . . . 4 |
47 | 23, 46 | ineq12i 3456 | . . 3 |
48 | 4, 47 | eqtr4i 2376 | . 2 |
49 | 1, 3, 48 | 3eqtr4i 2383 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 cab 2339 cvv 2860 cdif 3207 cun 3208 cin 3209 cif 3663 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-if 3664 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |