| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfif5 | Unicode version | ||
| Description: Alternate definition of
the conditional operator df-if 3664. Note that
|
| Ref | Expression |
|---|---|
| dfif3.1 |
|
| Ref | Expression |
|---|---|
| dfif5 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inindi 3473 |
. 2
| |
| 2 | dfif3.1 |
. . 3
| |
| 3 | 2 | dfif4 3674 |
. 2
|
| 4 | undir 3505 |
. . 3
| |
| 5 | unidm 3408 |
. . . . . . . 8
| |
| 6 | 5 | uneq1i 3415 |
. . . . . . 7
|
| 7 | unass 3421 |
. . . . . . 7
| |
| 8 | undi 3503 |
. . . . . . 7
| |
| 9 | 6, 7, 8 | 3eqtr3ri 2382 |
. . . . . 6
|
| 10 | undi 3503 |
. . . . . . . 8
| |
| 11 | undifabs 3628 |
. . . . . . . . . 10
| |
| 12 | 11 | ineq1i 3454 |
. . . . . . . . 9
|
| 13 | inabs 3487 |
. . . . . . . . 9
| |
| 14 | 12, 13 | eqtri 2373 |
. . . . . . . 8
|
| 15 | 10, 14 | eqtri 2373 |
. . . . . . 7
|
| 16 | undif2 3627 |
. . . . . . . . 9
| |
| 17 | 16 | ineq1i 3454 |
. . . . . . . 8
|
| 18 | undi 3503 |
. . . . . . . 8
| |
| 19 | 17, 18, 8 | 3eqtr4i 2383 |
. . . . . . 7
|
| 20 | 15, 19 | uneq12i 3417 |
. . . . . 6
|
| 21 | 9, 20 | eqtr4i 2376 |
. . . . 5
|
| 22 | unundi 3425 |
. . . . 5
| |
| 23 | 21, 22 | eqtr4i 2376 |
. . . 4
|
| 24 | unass 3421 |
. . . . . 6
| |
| 25 | undi 3503 |
. . . . . . . . 9
| |
| 26 | uncom 3409 |
. . . . . . . . 9
| |
| 27 | undif2 3627 |
. . . . . . . . . 10
| |
| 28 | 27 | ineq1i 3454 |
. . . . . . . . 9
|
| 29 | 25, 26, 28 | 3eqtr4i 2383 |
. . . . . . . 8
|
| 30 | undi 3503 |
. . . . . . . 8
| |
| 31 | 29, 30 | eqtr4i 2376 |
. . . . . . 7
|
| 32 | undi 3503 |
. . . . . . . 8
| |
| 33 | undifabs 3628 |
. . . . . . . . 9
| |
| 34 | 33 | ineq1i 3454 |
. . . . . . . 8
|
| 35 | inabs 3487 |
. . . . . . . 8
| |
| 36 | 32, 34, 35 | 3eqtrri 2378 |
. . . . . . 7
|
| 37 | 31, 36 | uneq12i 3417 |
. . . . . 6
|
| 38 | unidm 3408 |
. . . . . . 7
| |
| 39 | 38 | uneq2i 3416 |
. . . . . 6
|
| 40 | 24, 37, 39 | 3eqtr3ri 2382 |
. . . . 5
|
| 41 | uncom 3409 |
. . . . . . 7
| |
| 42 | 41 | ineq2i 3455 |
. . . . . 6
|
| 43 | undir 3505 |
. . . . . 6
| |
| 44 | 42, 43 | eqtr4i 2376 |
. . . . 5
|
| 45 | unundi 3425 |
. . . . 5
| |
| 46 | 40, 44, 45 | 3eqtr4i 2383 |
. . . 4
|
| 47 | 23, 46 | ineq12i 3456 |
. . 3
|
| 48 | 4, 47 | eqtr4i 2376 |
. 2
|
| 49 | 1, 3, 48 | 3eqtr4i 2383 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rab 2624 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-if 3664 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |