Proof of Theorem dfif5
Step | Hyp | Ref
| Expression |
1 | | inindi 3473 |
. 2
⊢ ((A ∪ B) ∩
((A ∪ (V ∖ C)) ∩
(B ∪ C))) = (((A
∪ B) ∩ (A ∪ (V ∖
C))) ∩ ((A ∪ B) ∩
(B ∪ C))) |
2 | | dfif3.1 |
. . 3
⊢ C = {x ∣ φ} |
3 | 2 | dfif4 3674 |
. 2
⊢ if(φ, A,
B) = ((A ∪ B) ∩
((A ∪ (V ∖ C)) ∩
(B ∪ C))) |
4 | | undir 3505 |
. . 3
⊢ ((A ∩ B) ∪
(((A ∖
B) ∩ C) ∪ ((B
∖ A)
∩ (V ∖ C)))) = ((A
∪ (((A ∖ B) ∩
C) ∪ ((B ∖ A) ∩ (V ∖
C)))) ∩ (B ∪ (((A
∖ B)
∩ C) ∪ ((B ∖ A) ∩ (V ∖
C))))) |
5 | | unidm 3408 |
. . . . . . . 8
⊢ (A ∪ A) =
A |
6 | 5 | uneq1i 3415 |
. . . . . . 7
⊢ ((A ∪ A) ∪
(B ∩ (V ∖ C))) =
(A ∪ (B ∩ (V ∖
C))) |
7 | | unass 3421 |
. . . . . . 7
⊢ ((A ∪ A) ∪
(B ∩ (V ∖ C))) =
(A ∪ (A ∪ (B ∩
(V ∖ C)))) |
8 | | undi 3503 |
. . . . . . 7
⊢ (A ∪ (B ∩
(V ∖ C))) = ((A ∪
B) ∩ (A ∪ (V ∖
C))) |
9 | 6, 7, 8 | 3eqtr3ri 2382 |
. . . . . 6
⊢ ((A ∪ B) ∩
(A ∪ (V ∖ C))) =
(A ∪ (A ∪ (B ∩
(V ∖ C)))) |
10 | | undi 3503 |
. . . . . . . 8
⊢ (A ∪ ((A
∖ B)
∩ C)) = ((A ∪ (A ∖ B)) ∩
(A ∪ C)) |
11 | | undifabs 3628 |
. . . . . . . . . 10
⊢ (A ∪ (A ∖ B)) =
A |
12 | 11 | ineq1i 3454 |
. . . . . . . . 9
⊢ ((A ∪ (A ∖ B)) ∩
(A ∪ C)) = (A ∩
(A ∪ C)) |
13 | | inabs 3487 |
. . . . . . . . 9
⊢ (A ∩ (A ∪
C)) = A |
14 | 12, 13 | eqtri 2373 |
. . . . . . . 8
⊢ ((A ∪ (A ∖ B)) ∩
(A ∪ C)) = A |
15 | 10, 14 | eqtri 2373 |
. . . . . . 7
⊢ (A ∪ ((A
∖ B)
∩ C)) = A |
16 | | undif2 3627 |
. . . . . . . . 9
⊢ (A ∪ (B ∖ A)) =
(A ∪ B) |
17 | 16 | ineq1i 3454 |
. . . . . . . 8
⊢ ((A ∪ (B ∖ A)) ∩
(A ∪ (V ∖ C))) =
((A ∪ B) ∩ (A
∪ (V ∖ C))) |
18 | | undi 3503 |
. . . . . . . 8
⊢ (A ∪ ((B
∖ A)
∩ (V ∖ C))) = ((A ∪
(B ∖
A)) ∩ (A ∪ (V ∖
C))) |
19 | 17, 18, 8 | 3eqtr4i 2383 |
. . . . . . 7
⊢ (A ∪ ((B
∖ A)
∩ (V ∖ C))) = (A ∪
(B ∩ (V ∖ C))) |
20 | 15, 19 | uneq12i 3417 |
. . . . . 6
⊢ ((A ∪ ((A
∖ B)
∩ C)) ∪ (A ∪ ((B
∖ A)
∩ (V ∖ C)))) = (A ∪
(A ∪ (B ∩ (V ∖
C)))) |
21 | 9, 20 | eqtr4i 2376 |
. . . . 5
⊢ ((A ∪ B) ∩
(A ∪ (V ∖ C))) =
((A ∪ ((A ∖ B) ∩ C))
∪ (A ∪ ((B ∖ A) ∩ (V ∖
C)))) |
22 | | unundi 3425 |
. . . . 5
⊢ (A ∪ (((A
∖ B)
∩ C) ∪ ((B ∖ A) ∩ (V ∖
C)))) = ((A ∪ ((A
∖ B)
∩ C)) ∪ (A ∪ ((B
∖ A)
∩ (V ∖ C)))) |
23 | 21, 22 | eqtr4i 2376 |
. . . 4
⊢ ((A ∪ B) ∩
(A ∪ (V ∖ C))) =
(A ∪ (((A ∖ B) ∩ C)
∪ ((B ∖ A) ∩ (V
∖ C)))) |
24 | | unass 3421 |
. . . . . 6
⊢ (((A ∩ C) ∪
B) ∪ B) = ((A ∩
C) ∪ (B ∪ B)) |
25 | | undi 3503 |
. . . . . . . . 9
⊢ (B ∪ (A ∩
C)) = ((B ∪ A) ∩
(B ∪ C)) |
26 | | uncom 3409 |
. . . . . . . . 9
⊢ ((A ∩ C) ∪
B) = (B
∪ (A ∩ C)) |
27 | | undif2 3627 |
. . . . . . . . . 10
⊢ (B ∪ (A ∖ B)) =
(B ∪ A) |
28 | 27 | ineq1i 3454 |
. . . . . . . . 9
⊢ ((B ∪ (A ∖ B)) ∩
(B ∪ C)) = ((B ∪
A) ∩ (B ∪ C)) |
29 | 25, 26, 28 | 3eqtr4i 2383 |
. . . . . . . 8
⊢ ((A ∩ C) ∪
B) = ((B ∪ (A ∖ B)) ∩
(B ∪ C)) |
30 | | undi 3503 |
. . . . . . . 8
⊢ (B ∪ ((A
∖ B)
∩ C)) = ((B ∪ (A ∖ B)) ∩
(B ∪ C)) |
31 | 29, 30 | eqtr4i 2376 |
. . . . . . 7
⊢ ((A ∩ C) ∪
B) = (B
∪ ((A ∖ B) ∩
C)) |
32 | | undi 3503 |
. . . . . . . 8
⊢ (B ∪ ((B
∖ A)
∩ (V ∖ C))) = ((B ∪
(B ∖
A)) ∩ (B ∪ (V ∖
C))) |
33 | | undifabs 3628 |
. . . . . . . . 9
⊢ (B ∪ (B ∖ A)) =
B |
34 | 33 | ineq1i 3454 |
. . . . . . . 8
⊢ ((B ∪ (B ∖ A)) ∩
(B ∪ (V ∖ C))) =
(B ∩ (B ∪ (V ∖
C))) |
35 | | inabs 3487 |
. . . . . . . 8
⊢ (B ∩ (B ∪
(V ∖ C))) = B |
36 | 32, 34, 35 | 3eqtrri 2378 |
. . . . . . 7
⊢ B = (B ∪
((B ∖
A) ∩ (V ∖ C))) |
37 | 31, 36 | uneq12i 3417 |
. . . . . 6
⊢ (((A ∩ C) ∪
B) ∪ B) = ((B ∪
((A ∖
B) ∩ C)) ∪ (B
∪ ((B ∖ A) ∩ (V
∖ C)))) |
38 | | unidm 3408 |
. . . . . . 7
⊢ (B ∪ B) =
B |
39 | 38 | uneq2i 3416 |
. . . . . 6
⊢ ((A ∩ C) ∪
(B ∪ B)) = ((A ∩
C) ∪ B) |
40 | 24, 37, 39 | 3eqtr3ri 2382 |
. . . . 5
⊢ ((A ∩ C) ∪
B) = ((B ∪ ((A
∖ B)
∩ C)) ∪ (B ∪ ((B
∖ A)
∩ (V ∖ C)))) |
41 | | uncom 3409 |
. . . . . . 7
⊢ (B ∪ C) =
(C ∪ B) |
42 | 41 | ineq2i 3455 |
. . . . . 6
⊢ ((A ∪ B) ∩
(B ∪ C)) = ((A ∪
B) ∩ (C ∪ B)) |
43 | | undir 3505 |
. . . . . 6
⊢ ((A ∩ C) ∪
B) = ((A ∪ B) ∩
(C ∪ B)) |
44 | 42, 43 | eqtr4i 2376 |
. . . . 5
⊢ ((A ∪ B) ∩
(B ∪ C)) = ((A ∩
C) ∪ B) |
45 | | unundi 3425 |
. . . . 5
⊢ (B ∪ (((A
∖ B)
∩ C) ∪ ((B ∖ A) ∩ (V ∖
C)))) = ((B ∪ ((A
∖ B)
∩ C)) ∪ (B ∪ ((B
∖ A)
∩ (V ∖ C)))) |
46 | 40, 44, 45 | 3eqtr4i 2383 |
. . . 4
⊢ ((A ∪ B) ∩
(B ∪ C)) = (B ∪
(((A ∖
B) ∩ C) ∪ ((B
∖ A)
∩ (V ∖ C)))) |
47 | 23, 46 | ineq12i 3456 |
. . 3
⊢ (((A ∪ B) ∩
(A ∪ (V ∖ C))) ∩
((A ∪ B) ∩ (B
∪ C))) = ((A ∪ (((A
∖ B)
∩ C) ∪ ((B ∖ A) ∩ (V ∖
C)))) ∩ (B ∪ (((A
∖ B)
∩ C) ∪ ((B ∖ A) ∩ (V ∖
C))))) |
48 | 4, 47 | eqtr4i 2376 |
. 2
⊢ ((A ∩ B) ∪
(((A ∖
B) ∩ C) ∪ ((B
∖ A)
∩ (V ∖ C)))) = (((A
∪ B) ∩ (A ∪ (V ∖
C))) ∩ ((A ∪ B) ∩
(B ∪ C))) |
49 | 1, 3, 48 | 3eqtr4i 2383 |
1
⊢ if(φ, A,
B) = ((A ∩ B) ∪
(((A ∖
B) ∩ C) ∪ ((B
∖ A)
∩ (V ∖ C)))) |