New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqtr4i | Unicode version |
Description: An equality transitivity inference. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
eqtr4i.1 | |
eqtr4i.2 |
Ref | Expression |
---|---|
eqtr4i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqtr4i.1 | . 2 | |
2 | eqtr4i.2 | . . 3 | |
3 | 2 | eqcomi 2357 | . 2 |
4 | 1, 3 | eqtri 2373 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wceq 1642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-11 1746 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-ex 1542 df-cleq 2346 |
This theorem is referenced by: 3eqtr2i 2379 3eqtr2ri 2380 3eqtr4i 2383 3eqtr4ri 2384 rabab 2877 cbvralcsf 3199 cbvrabcsf 3202 dfdif2 3223 rabbi2dva 3464 uneqin 3507 unrab 3527 inrab 3528 inrab2 3529 difrab 3530 dfrab3ss 3534 rabun2 3535 rabxm 3574 difidALT 3620 difdifdir 3638 dfif3 3673 dfif5 3675 tpidm 3825 ssunpr 3869 sstp 3871 dfint2 3929 iunrab 4014 uniiun 4020 intiin 4021 0iin 4025 complV 4071 dfaddc2 4382 dfnnc2 4396 preaddccan2lem1 4455 ltfinex 4465 evenfinex 4504 oddfinex 4505 tfinnn 4535 spfinex 4538 dfop2 4576 dfproj12 4577 dfproj22 4578 phiall 4619 opeq 4620 dfima2 4746 xpundi 4833 xpundir 4834 dmun 4913 rnopab2 4969 resopab 5000 opabresid 5004 cnvun 5034 imaundir 5041 dmtpop 5072 rnco2 5089 dmco 5090 f1ococnv2 5310 dmoprab 5575 rnoprab2 5578 fnov 5592 fconstmpt 5682 dmmpt 5684 mpt2mptx 5709 mptv 5719 mpt2v 5720 dfswap3 5729 dfswap4 5730 releqmpt 5809 releqmpt2 5810 cupex 5817 composeex 5821 disjex 5824 addcfnex 5825 funsex 5829 fnsex 5833 crossex 5851 pw1fnex 5853 pw1fnf1o 5856 domfnex 5871 ranfnex 5872 transex 5911 refex 5912 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 qsexg 5983 ecqs 5989 enex 6032 enpw1pw 6076 enprmaplem1 6077 enprmaplem4 6080 mucex 6134 ncpw1c 6155 ceex 6175 ce0 6191 ce2 6193 leconnnc 6219 tcncv 6227 tce2 6237 tcfnex 6245 nmembers1lem1 6269 |
Copyright terms: Public domain | W3C validator |