NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfoddfin2 Unicode version

Theorem dfoddfin2 4514
Description: Alternate definition of odd number. (Contributed by SF, 25-Jan-2015.)
Assertion
Ref Expression
dfoddfin2 Oddfin Nn 1c 1c
Distinct variable group:   ,

Proof of Theorem dfoddfin2
StepHypRef Expression
1 df-oddfin 4446 . 2 Oddfin Nn 1c
2 r19.41v 2765 . . . 4 Nn 1c Nn 1c
3 neeq1 2525 . . . . . 6 1c 1c
43pm5.32i 618 . . . . 5 1c 1c 1c
54rexbii 2640 . . . 4 Nn 1c Nn 1c 1c
62, 5bitr3i 242 . . 3 Nn 1c Nn 1c 1c
76abbii 2466 . 2 Nn 1c Nn 1c 1c
81, 7eqtri 2373 1 Oddfin Nn 1c 1c
Colors of variables: wff setvar class
Syntax hints:   wa 358   wceq 1642  cab 2339   wne 2517  wrex 2616  c0 3551  1cc1c 4135   Nn cnnc 4374   cplc 4376   Oddfin coddfin 4438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-ne 2519  df-rex 2621  df-oddfin 4446
This theorem is referenced by:  evenodddisj  4517
  Copyright terms: Public domain W3C validator