| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > dfoddfin2 | Unicode version | ||
| Description: Alternate definition of odd number. (Contributed by SF, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| dfoddfin2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oddfin 4446 |
. 2
| |
| 2 | r19.41v 2765 |
. . . 4
| |
| 3 | neeq1 2525 |
. . . . . 6
| |
| 4 | 3 | pm5.32i 618 |
. . . . 5
|
| 5 | 4 | rexbii 2640 |
. . . 4
|
| 6 | 2, 5 | bitr3i 242 |
. . 3
|
| 7 | 6 | abbii 2466 |
. 2
|
| 8 | 1, 7 | eqtri 2373 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-ne 2519 df-rex 2621 df-oddfin 4446 |
| This theorem is referenced by: evenodddisj 4517 |
| Copyright terms: Public domain | W3C validator |