New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfoddfin2 | Unicode version |
Description: Alternate definition of odd number. (Contributed by SF, 25-Jan-2015.) |
Ref | Expression |
---|---|
dfoddfin2 | Oddfin Nn 1c 1c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-oddfin 4445 | . 2 Oddfin Nn 1c | |
2 | r19.41v 2764 | . . . 4 Nn 1c Nn 1c | |
3 | neeq1 2524 | . . . . . 6 1c 1c | |
4 | 3 | pm5.32i 618 | . . . . 5 1c 1c 1c |
5 | 4 | rexbii 2639 | . . . 4 Nn 1c Nn 1c 1c |
6 | 2, 5 | bitr3i 242 | . . 3 Nn 1c Nn 1c 1c |
7 | 6 | abbii 2465 | . 2 Nn 1c Nn 1c 1c |
8 | 1, 7 | eqtri 2373 | 1 Oddfin Nn 1c 1c |
Colors of variables: wff setvar class |
Syntax hints: wa 358 wceq 1642 cab 2339 wne 2516 wrex 2615 c0 3550 1cc1c 4134 Nn cnnc 4373 cplc 4375 Oddfin coddfin 4437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-ne 2518 df-rex 2620 df-oddfin 4445 |
This theorem is referenced by: evenodddisj 4516 |
Copyright terms: Public domain | W3C validator |