NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  evenoddnnnul Unicode version

Theorem evenoddnnnul 4515
Description: Every nonempty finite cardinal is either even or odd. Theorem X.1.35 of [Rosser] p. 529. (Contributed by SF, 20-Jan-2015.)
Assertion
Ref Expression
evenoddnnnul Evenfin Oddfin Nn

Proof of Theorem evenoddnnnul
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 evennn 4507 . . . . . 6 Evenfin Nn
2 evennnul 4509 . . . . . 6 Evenfin
3 eldifsn 3840 . . . . . 6 Nn Nn
41, 2, 3sylanbrc 645 . . . . 5 Evenfin Nn
54ssriv 3278 . . . 4 Evenfin Nn
6 oddnn 4508 . . . . . 6 Oddfin Nn
7 oddnnul 4510 . . . . . 6 Oddfin
86, 7, 3sylanbrc 645 . . . . 5 Oddfin Nn
98ssriv 3278 . . . 4 Oddfin Nn
105, 9pm3.2i 441 . . 3 Evenfin Nn Oddfin Nn
11 unss 3438 . . 3 Evenfin Nn Oddfin Nn Evenfin Oddfin Nn
1210, 11mpbi 199 . 2 Evenfin Oddfin Nn
13 eldifsn 3840 . . . 4 Nn Nn
14 vex 2863 . . . . . . . . . . . 12
1514elsnc 3757 . . . . . . . . . . 11
16 df-ne 2519 . . . . . . . . . . . 12
1716con2bii 322 . . . . . . . . . . 11
1815, 17bitri 240 . . . . . . . . . 10
1918orbi1i 506 . . . . . . . . 9 Evenfin Oddfin Evenfin Oddfin
20 elun 3221 . . . . . . . . 9 Evenfin Oddfin Evenfin Oddfin
21 imor 401 . . . . . . . . 9 Evenfin Oddfin Evenfin Oddfin
2219, 20, 213bitr4i 268 . . . . . . . 8 Evenfin Oddfin Evenfin Oddfin
2322abbi2i 2465 . . . . . . 7 Evenfin Oddfin Evenfin Oddfin
24 snex 4112 . . . . . . . 8
25 evenfinex 4504 . . . . . . . . 9 Evenfin
26 oddfinex 4505 . . . . . . . . 9 Oddfin
2725, 26unex 4107 . . . . . . . 8 Evenfin Oddfin
2824, 27unex 4107 . . . . . . 7 Evenfin Oddfin
2923, 28eqeltrri 2424 . . . . . 6 Evenfin Oddfin
30 neeq1 2525 . . . . . . 7 0c 0c
31 eleq1 2413 . . . . . . 7 0c Evenfin Oddfin 0c Evenfin Oddfin
3230, 31imbi12d 311 . . . . . 6 0c Evenfin Oddfin 0c 0c Evenfin Oddfin
33 neeq1 2525 . . . . . . 7
34 eleq1 2413 . . . . . . 7 Evenfin Oddfin Evenfin Oddfin
3533, 34imbi12d 311 . . . . . 6 Evenfin Oddfin Evenfin Oddfin
36 neeq1 2525 . . . . . . 7 1c 1c
37 eleq1 2413 . . . . . . 7 1c Evenfin Oddfin 1c Evenfin Oddfin
3836, 37imbi12d 311 . . . . . 6 1c Evenfin Oddfin 1c 1c Evenfin Oddfin
39 neeq1 2525 . . . . . . 7
40 eleq1 2413 . . . . . . 7 Evenfin Oddfin Evenfin Oddfin
4139, 40imbi12d 311 . . . . . 6 Evenfin Oddfin Evenfin Oddfin
42 ssun1 3427 . . . . . . . 8 Evenfin Evenfin Oddfin
43 0ceven 4506 . . . . . . . 8 0c Evenfin
4442, 43sselii 3271 . . . . . . 7 0c Evenfin Oddfin
4544a1i 10 . . . . . 6 0c 0c Evenfin Oddfin
46 addcnnul 4454 . . . . . . . . . 10 1c 1c
4746simpld 445 . . . . . . . . 9 1c
48 sucevenodd 4511 . . . . . . . . . . . 12 Evenfin 1c 1c Oddfin
4948expcom 424 . . . . . . . . . . 11 1c Evenfin 1c Oddfin
50 sucoddeven 4512 . . . . . . . . . . . 12 Oddfin 1c 1c Evenfin
5150expcom 424 . . . . . . . . . . 11 1c Oddfin 1c Evenfin
5249, 51orim12d 811 . . . . . . . . . 10 1c Evenfin Oddfin 1c Oddfin 1c Evenfin
53 elun 3221 . . . . . . . . . 10 Evenfin Oddfin Evenfin Oddfin
54 elun 3221 . . . . . . . . . . 11 1c Evenfin Oddfin 1c Evenfin 1c Oddfin
55 orcom 376 . . . . . . . . . . 11 1c Evenfin 1c Oddfin 1c Oddfin 1c Evenfin
5654, 55bitri 240 . . . . . . . . . 10 1c Evenfin Oddfin 1c Oddfin 1c Evenfin
5752, 53, 563imtr4g 261 . . . . . . . . 9 1c Evenfin Oddfin 1c Evenfin Oddfin
5847, 57embantd 50 . . . . . . . 8 1c Evenfin Oddfin 1c Evenfin Oddfin
5958com12 27 . . . . . . 7 Evenfin Oddfin 1c 1c Evenfin Oddfin
6059a1i 10 . . . . . 6 Nn Evenfin Oddfin 1c 1c Evenfin Oddfin
6129, 32, 35, 38, 41, 45, 60finds 4412 . . . . 5 Nn Evenfin Oddfin
6261imp 418 . . . 4 Nn Evenfin Oddfin
6313, 62sylbi 187 . . 3 Nn Evenfin Oddfin
6463ssriv 3278 . 2 Nn Evenfin Oddfin
6512, 64eqssi 3289 1 Evenfin Oddfin Nn
Colors of variables: wff setvar class
Syntax hints:   wn 3   wi 4   wo 357   wa 358   wceq 1642   wcel 1710  cab 2339   wne 2517  cvv 2860   cdif 3207   cun 3208   wss 3258  c0 3551  csn 3738  1cc1c 4135   Nn cnnc 4374  0cc0c 4375   cplc 4376   Evenfin cevenfin 4437   Oddfin coddfin 4438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-0c 4378  df-addc 4379  df-nnc 4380  df-evenfin 4445  df-oddfin 4446
This theorem is referenced by:  vinf  4556
  Copyright terms: Public domain W3C validator