New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > diftpsn3 | Unicode version |
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
Ref | Expression |
---|---|
diftpsn3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-tp 3744 | . . . 4 | |
2 | 1 | a1i 10 | . . 3 |
3 | 2 | difeq1d 3385 | . 2 |
4 | difundir 3509 | . . 3 | |
5 | 4 | a1i 10 | . 2 |
6 | df-pr 3743 | . . . . . . . . 9 | |
7 | 6 | a1i 10 | . . . . . . . 8 |
8 | 7 | ineq1d 3457 | . . . . . . 7 |
9 | incom 3449 | . . . . . . . . 9 | |
10 | indi 3502 | . . . . . . . . 9 | |
11 | 9, 10 | eqtri 2373 | . . . . . . . 8 |
12 | 11 | a1i 10 | . . . . . . 7 |
13 | necom 2598 | . . . . . . . . . . 11 | |
14 | disjsn2 3788 | . . . . . . . . . . 11 | |
15 | 13, 14 | sylbi 187 | . . . . . . . . . 10 |
16 | 15 | adantr 451 | . . . . . . . . 9 |
17 | necom 2598 | . . . . . . . . . . 11 | |
18 | disjsn2 3788 | . . . . . . . . . . 11 | |
19 | 17, 18 | sylbi 187 | . . . . . . . . . 10 |
20 | 19 | adantl 452 | . . . . . . . . 9 |
21 | 16, 20 | uneq12d 3420 | . . . . . . . 8 |
22 | unidm 3408 | . . . . . . . 8 | |
23 | 21, 22 | syl6eq 2401 | . . . . . . 7 |
24 | 8, 12, 23 | 3eqtrd 2389 | . . . . . 6 |
25 | disj3 3596 | . . . . . 6 | |
26 | 24, 25 | sylib 188 | . . . . 5 |
27 | 26 | eqcomd 2358 | . . . 4 |
28 | difid 3619 | . . . . 5 | |
29 | 28 | a1i 10 | . . . 4 |
30 | 27, 29 | uneq12d 3420 | . . 3 |
31 | un0 3576 | . . 3 | |
32 | 30, 31 | syl6eq 2401 | . 2 |
33 | 3, 5, 32 | 3eqtrd 2389 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 wne 2517 cdif 3207 cun 3208 cin 3209 c0 3551 csn 3738 cpr 3739 ctp 3740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-tp 3744 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |