| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > diftpsn3 | Unicode version | ||
| Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017.) |
| Ref | Expression |
|---|---|
| diftpsn3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tp 3744 |
. . . 4
| |
| 2 | 1 | a1i 10 |
. . 3
|
| 3 | 2 | difeq1d 3385 |
. 2
|
| 4 | difundir 3509 |
. . 3
| |
| 5 | 4 | a1i 10 |
. 2
|
| 6 | df-pr 3743 |
. . . . . . . . 9
| |
| 7 | 6 | a1i 10 |
. . . . . . . 8
|
| 8 | 7 | ineq1d 3457 |
. . . . . . 7
|
| 9 | incom 3449 |
. . . . . . . . 9
| |
| 10 | indi 3502 |
. . . . . . . . 9
| |
| 11 | 9, 10 | eqtri 2373 |
. . . . . . . 8
|
| 12 | 11 | a1i 10 |
. . . . . . 7
|
| 13 | necom 2598 |
. . . . . . . . . . 11
| |
| 14 | disjsn2 3788 |
. . . . . . . . . . 11
| |
| 15 | 13, 14 | sylbi 187 |
. . . . . . . . . 10
|
| 16 | 15 | adantr 451 |
. . . . . . . . 9
|
| 17 | necom 2598 |
. . . . . . . . . . 11
| |
| 18 | disjsn2 3788 |
. . . . . . . . . . 11
| |
| 19 | 17, 18 | sylbi 187 |
. . . . . . . . . 10
|
| 20 | 19 | adantl 452 |
. . . . . . . . 9
|
| 21 | 16, 20 | uneq12d 3420 |
. . . . . . . 8
|
| 22 | unidm 3408 |
. . . . . . . 8
| |
| 23 | 21, 22 | syl6eq 2401 |
. . . . . . 7
|
| 24 | 8, 12, 23 | 3eqtrd 2389 |
. . . . . 6
|
| 25 | disj3 3596 |
. . . . . 6
| |
| 26 | 24, 25 | sylib 188 |
. . . . 5
|
| 27 | 26 | eqcomd 2358 |
. . . 4
|
| 28 | difid 3619 |
. . . . 5
| |
| 29 | 28 | a1i 10 |
. . . 4
|
| 30 | 27, 29 | uneq12d 3420 |
. . 3
|
| 31 | un0 3576 |
. . 3
| |
| 32 | 30, 31 | syl6eq 2401 |
. 2
|
| 33 | 3, 5, 32 | 3eqtrd 2389 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-tp 3744 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |