Proof of Theorem diftpsn3
| Step | Hyp | Ref
| Expression |
| 1 | | df-tp 3744 |
. . . 4
⊢ {A, B, C} = ({A,
B} ∪ {C}) |
| 2 | 1 | a1i 10 |
. . 3
⊢ ((A ≠ C ∧ B ≠
C) → {A, B, C} = ({A,
B} ∪ {C})) |
| 3 | 2 | difeq1d 3385 |
. 2
⊢ ((A ≠ C ∧ B ≠
C) → ({A, B, C} ∖ {C}) = (({A,
B} ∪ {C}) ∖ {C})) |
| 4 | | difundir 3509 |
. . 3
⊢ (({A, B} ∪
{C}) ∖
{C}) = (({A, B} ∖ {C}) ∪
({C} ∖
{C})) |
| 5 | 4 | a1i 10 |
. 2
⊢ ((A ≠ C ∧ B ≠
C) → (({A, B} ∪
{C}) ∖
{C}) = (({A, B} ∖ {C}) ∪
({C} ∖
{C}))) |
| 6 | | df-pr 3743 |
. . . . . . . . 9
⊢ {A, B} =
({A} ∪ {B}) |
| 7 | 6 | a1i 10 |
. . . . . . . 8
⊢ ((A ≠ C ∧ B ≠
C) → {A, B} =
({A} ∪ {B})) |
| 8 | 7 | ineq1d 3457 |
. . . . . . 7
⊢ ((A ≠ C ∧ B ≠
C) → ({A, B} ∩
{C}) = (({A} ∪ {B})
∩ {C})) |
| 9 | | incom 3449 |
. . . . . . . . 9
⊢ (({A} ∪ {B})
∩ {C}) = ({C} ∩ ({A}
∪ {B})) |
| 10 | | indi 3502 |
. . . . . . . . 9
⊢ ({C} ∩ ({A}
∪ {B})) = (({C} ∩ {A})
∪ ({C} ∩ {B})) |
| 11 | 9, 10 | eqtri 2373 |
. . . . . . . 8
⊢ (({A} ∪ {B})
∩ {C}) = (({C} ∩ {A})
∪ ({C} ∩ {B})) |
| 12 | 11 | a1i 10 |
. . . . . . 7
⊢ ((A ≠ C ∧ B ≠
C) → (({A} ∪ {B})
∩ {C}) = (({C} ∩ {A})
∪ ({C} ∩ {B}))) |
| 13 | | necom 2598 |
. . . . . . . . . . 11
⊢ (A ≠ C ↔
C ≠ A) |
| 14 | | disjsn2 3788 |
. . . . . . . . . . 11
⊢ (C ≠ A →
({C} ∩ {A}) = ∅) |
| 15 | 13, 14 | sylbi 187 |
. . . . . . . . . 10
⊢ (A ≠ C →
({C} ∩ {A}) = ∅) |
| 16 | 15 | adantr 451 |
. . . . . . . . 9
⊢ ((A ≠ C ∧ B ≠
C) → ({C} ∩ {A}) =
∅) |
| 17 | | necom 2598 |
. . . . . . . . . . 11
⊢ (B ≠ C ↔
C ≠ B) |
| 18 | | disjsn2 3788 |
. . . . . . . . . . 11
⊢ (C ≠ B →
({C} ∩ {B}) = ∅) |
| 19 | 17, 18 | sylbi 187 |
. . . . . . . . . 10
⊢ (B ≠ C →
({C} ∩ {B}) = ∅) |
| 20 | 19 | adantl 452 |
. . . . . . . . 9
⊢ ((A ≠ C ∧ B ≠
C) → ({C} ∩ {B}) =
∅) |
| 21 | 16, 20 | uneq12d 3420 |
. . . . . . . 8
⊢ ((A ≠ C ∧ B ≠
C) → (({C} ∩ {A})
∪ ({C} ∩ {B})) = (∅ ∪
∅)) |
| 22 | | unidm 3408 |
. . . . . . . 8
⊢ (∅ ∪ ∅) =
∅ |
| 23 | 21, 22 | syl6eq 2401 |
. . . . . . 7
⊢ ((A ≠ C ∧ B ≠
C) → (({C} ∩ {A})
∪ ({C} ∩ {B})) = ∅) |
| 24 | 8, 12, 23 | 3eqtrd 2389 |
. . . . . 6
⊢ ((A ≠ C ∧ B ≠
C) → ({A, B} ∩
{C}) = ∅) |
| 25 | | disj3 3596 |
. . . . . 6
⊢ (({A, B} ∩
{C}) = ∅
↔ {A, B} = ({A,
B} ∖
{C})) |
| 26 | 24, 25 | sylib 188 |
. . . . 5
⊢ ((A ≠ C ∧ B ≠
C) → {A, B} =
({A, B}
∖ {C})) |
| 27 | 26 | eqcomd 2358 |
. . . 4
⊢ ((A ≠ C ∧ B ≠
C) → ({A, B} ∖ {C}) =
{A, B}) |
| 28 | | difid 3619 |
. . . . 5
⊢ ({C} ∖ {C}) = ∅ |
| 29 | 28 | a1i 10 |
. . . 4
⊢ ((A ≠ C ∧ B ≠
C) → ({C} ∖ {C}) = ∅) |
| 30 | 27, 29 | uneq12d 3420 |
. . 3
⊢ ((A ≠ C ∧ B ≠
C) → (({A, B} ∖ {C}) ∪
({C} ∖
{C})) = ({A, B} ∪
∅)) |
| 31 | | un0 3576 |
. . 3
⊢ ({A, B} ∪
∅) = {A,
B} |
| 32 | 30, 31 | syl6eq 2401 |
. 2
⊢ ((A ≠ C ∧ B ≠
C) → (({A, B} ∖ {C}) ∪
({C} ∖
{C})) = {A, B}) |
| 33 | 3, 5, 32 | 3eqtrd 2389 |
1
⊢ ((A ≠ C ∧ B ≠
C) → ({A, B, C} ∖ {C}) = {A,
B}) |