New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > drsb1 | GIF version |
Description: Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
drsb1 | ⊢ (∀x x = y → ([z / x]φ ↔ [z / y]φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equequ1 1684 | . . . . 5 ⊢ (x = y → (x = z ↔ y = z)) | |
2 | 1 | sps 1754 | . . . 4 ⊢ (∀x x = y → (x = z ↔ y = z)) |
3 | 2 | imbi1d 308 | . . 3 ⊢ (∀x x = y → ((x = z → φ) ↔ (y = z → φ))) |
4 | 2 | anbi1d 685 | . . . 4 ⊢ (∀x x = y → ((x = z ∧ φ) ↔ (y = z ∧ φ))) |
5 | 4 | drex1 1967 | . . 3 ⊢ (∀x x = y → (∃x(x = z ∧ φ) ↔ ∃y(y = z ∧ φ))) |
6 | 3, 5 | anbi12d 691 | . 2 ⊢ (∀x x = y → (((x = z → φ) ∧ ∃x(x = z ∧ φ)) ↔ ((y = z → φ) ∧ ∃y(y = z ∧ φ)))) |
7 | df-sb 1649 | . 2 ⊢ ([z / x]φ ↔ ((x = z → φ) ∧ ∃x(x = z ∧ φ))) | |
8 | df-sb 1649 | . 2 ⊢ ([z / y]φ ↔ ((y = z → φ) ∧ ∃y(y = z ∧ φ))) | |
9 | 6, 7, 8 | 3bitr4g 279 | 1 ⊢ (∀x x = y → ([z / x]φ ↔ [z / y]φ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 |
This theorem depends on definitions: df-bi 177 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 |
This theorem is referenced by: sbequi 2059 nfsb4t 2080 sbco3 2088 sbcom 2089 sb9i 2094 iotaeq 4348 |
Copyright terms: Public domain | W3C validator |