New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  elab3gf Unicode version

Theorem elab3gf 2990
 Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2983. (Contributed by NM, 6-Sep-2011.)
Hypotheses
Ref Expression
elab3gf.1
elab3gf.2
elab3gf.3
Assertion
Ref Expression
elab3gf

Proof of Theorem elab3gf
StepHypRef Expression
1 elab3gf.1 . . . . 5
2 elab3gf.2 . . . . 5
3 elab3gf.3 . . . . 5
41, 2, 3elabgf 2983 . . . 4
54ibi 232 . . 3
6 pm2.21 100 . . 3
75, 6impbid2 195 . 2
81, 2, 3elabgf 2983 . 2
97, 8ja 153 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 176  wnf 1544   wceq 1642   wcel 1710  cab 2339  wnfc 2476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861 This theorem is referenced by:  elab3g  2991
 Copyright terms: Public domain W3C validator