New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elab3gf | GIF version |
Description: Membership in a class abstraction, with a weaker antecedent than elabgf 2984. (Contributed by NM, 6-Sep-2011.) |
Ref | Expression |
---|---|
elab3gf.1 | ⊢ ℲxA |
elab3gf.2 | ⊢ Ⅎxψ |
elab3gf.3 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
elab3gf | ⊢ ((ψ → A ∈ B) → (A ∈ {x ∣ φ} ↔ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elab3gf.1 | . . . . 5 ⊢ ℲxA | |
2 | elab3gf.2 | . . . . 5 ⊢ Ⅎxψ | |
3 | elab3gf.3 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
4 | 1, 2, 3 | elabgf 2984 | . . . 4 ⊢ (A ∈ {x ∣ φ} → (A ∈ {x ∣ φ} ↔ ψ)) |
5 | 4 | ibi 232 | . . 3 ⊢ (A ∈ {x ∣ φ} → ψ) |
6 | pm2.21 100 | . . 3 ⊢ (¬ ψ → (ψ → A ∈ {x ∣ φ})) | |
7 | 5, 6 | impbid2 195 | . 2 ⊢ (¬ ψ → (A ∈ {x ∣ φ} ↔ ψ)) |
8 | 1, 2, 3 | elabgf 2984 | . 2 ⊢ (A ∈ B → (A ∈ {x ∣ φ} ↔ ψ)) |
9 | 7, 8 | ja 153 | 1 ⊢ ((ψ → A ∈ B) → (A ∈ {x ∣ φ} ↔ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: elab3g 2992 |
Copyright terms: Public domain | W3C validator |