| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > elp6 | Unicode version | ||
| Description: Membership in the P6 operator. (Contributed by SF, 13-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| elp6 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq 3745 | 
. . . . . 6
 | |
| 2 | 1 | sneqd 3747 | 
. . . . 5
 | 
| 3 | 2 | xpkeq2d 4206 | 
. . . 4
 | 
| 4 | 3 | sseq1d 3299 | 
. . 3
 | 
| 5 | df-p6 4192 | 
. . 3
 | |
| 6 | 4, 5 | elab2g 2988 | 
. 2
 | 
| 7 | xpkssvvk 4211 | 
. . . 4
 | |
| 8 | ssrelk 4212 | 
. . . 4
 | |
| 9 | 7, 8 | ax-mp 5 | 
. . 3
 | 
| 10 | vex 2863 | 
. . . . . . . . 9
 | |
| 11 | vex 2863 | 
. . . . . . . . 9
 | |
| 12 | 10, 11 | opkelxpk 4249 | 
. . . . . . . 8
 | 
| 13 | 10 | biantrur 492 | 
. . . . . . . 8
 | 
| 14 | df-sn 3742 | 
. . . . . . . . 9
 | |
| 15 | 14 | eqabri 2461 | 
. . . . . . . 8
 | 
| 16 | 12, 13, 15 | 3bitr2i 264 | 
. . . . . . 7
 | 
| 17 | 16 | imbi1i 315 | 
. . . . . 6
 | 
| 18 | 17 | albii 1566 | 
. . . . 5
 | 
| 19 | snex 4112 | 
. . . . . 6
 | |
| 20 | opkeq2 4061 | 
. . . . . . 7
 | |
| 21 | 20 | eleq1d 2419 | 
. . . . . 6
 | 
| 22 | 19, 21 | ceqsalv 2886 | 
. . . . 5
 | 
| 23 | 18, 22 | bitri 240 | 
. . . 4
 | 
| 24 | 23 | albii 1566 | 
. . 3
 | 
| 25 | 9, 24 | bitri 240 | 
. 2
 | 
| 26 | 6, 25 | syl6bb 252 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 df-p6 4192 | 
| This theorem is referenced by: p6exg 4291 dfuni12 4292 dfimak2 4299 | 
| Copyright terms: Public domain | W3C validator |