New Foundations Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  NFE Home  >  Th. List  >  elpr Unicode version

Theorem elpr 3751
 Description: A member of an unordered pair of classes is one or the other of them. Exercise 1 of [TakeutiZaring] p. 15. (Contributed by NM, 13-Sep-1995.)
Hypothesis
Ref Expression
elpr.1
Assertion
Ref Expression
elpr

Proof of Theorem elpr
StepHypRef Expression
1 elpr.1 . 2
2 elprg 3750 . 2
31, 2ax-mp 5 1
 Colors of variables: wff setvar class Syntax hints:   wb 176   wo 357   wceq 1642   wcel 1710  cvv 2859  cpr 3738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-v 2861  df-nin 3211  df-compl 3212  df-un 3214  df-sn 3741  df-pr 3742 This theorem is referenced by:  difprsnss  3846  pwpr  3883  pwtp  3884  unipr  3905  intpr  3959  axprimlem2  4089  preqr1  4124  preq12b  4127  enprmaplem3  6078  enprmaplem5  6080  2p1e3c  6156
 Copyright terms: Public domain W3C validator