NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elrabf Unicode version

Theorem elrabf 2994
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
Hypotheses
Ref Expression
elrabf.1  F/_
elrabf.2  F/_
elrabf.3  F/
elrabf.4
Assertion
Ref Expression
elrabf

Proof of Theorem elrabf
StepHypRef Expression
1 elex 2868 . 2
2 elex 2868 . . 3
32adantr 451 . 2
4 df-rab 2624 . . . 4
54eleq2i 2417 . . 3
6 elrabf.1 . . . 4  F/_
7 elrabf.2 . . . . . 6  F/_
86, 7nfel 2498 . . . . 5  F/
9 elrabf.3 . . . . 5  F/
108, 9nfan 1824 . . . 4  F/
11 eleq1 2413 . . . . 5
12 elrabf.4 . . . . 5
1311, 12anbi12d 691 . . . 4
146, 10, 13elabgf 2984 . . 3
155, 14syl5bb 248 . 2
161, 3, 15pm5.21nii 342 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   F/wnf 1544   wceq 1642   wcel 1710  cab 2339   F/_wnfc 2477  crab 2619  cvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rab 2624  df-v 2862
This theorem is referenced by:  elrab  2995
  Copyright terms: Public domain W3C validator