New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elrabf | GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
Ref | Expression |
---|---|
elrabf.1 | ⊢ ℲxA |
elrabf.2 | ⊢ ℲxB |
elrabf.3 | ⊢ Ⅎxψ |
elrabf.4 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
elrabf | ⊢ (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2868 | . 2 ⊢ (A ∈ {x ∈ B ∣ φ} → A ∈ V) | |
2 | elex 2868 | . . 3 ⊢ (A ∈ B → A ∈ V) | |
3 | 2 | adantr 451 | . 2 ⊢ ((A ∈ B ∧ ψ) → A ∈ V) |
4 | df-rab 2624 | . . . 4 ⊢ {x ∈ B ∣ φ} = {x ∣ (x ∈ B ∧ φ)} | |
5 | 4 | eleq2i 2417 | . . 3 ⊢ (A ∈ {x ∈ B ∣ φ} ↔ A ∈ {x ∣ (x ∈ B ∧ φ)}) |
6 | elrabf.1 | . . . 4 ⊢ ℲxA | |
7 | elrabf.2 | . . . . . 6 ⊢ ℲxB | |
8 | 6, 7 | nfel 2498 | . . . . 5 ⊢ Ⅎx A ∈ B |
9 | elrabf.3 | . . . . 5 ⊢ Ⅎxψ | |
10 | 8, 9 | nfan 1824 | . . . 4 ⊢ Ⅎx(A ∈ B ∧ ψ) |
11 | eleq1 2413 | . . . . 5 ⊢ (x = A → (x ∈ B ↔ A ∈ B)) | |
12 | elrabf.4 | . . . . 5 ⊢ (x = A → (φ ↔ ψ)) | |
13 | 11, 12 | anbi12d 691 | . . . 4 ⊢ (x = A → ((x ∈ B ∧ φ) ↔ (A ∈ B ∧ ψ))) |
14 | 6, 10, 13 | elabgf 2984 | . . 3 ⊢ (A ∈ V → (A ∈ {x ∣ (x ∈ B ∧ φ)} ↔ (A ∈ B ∧ ψ))) |
15 | 5, 14 | syl5bb 248 | . 2 ⊢ (A ∈ V → (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ ψ))) |
16 | 1, 3, 15 | pm5.21nii 342 | 1 ⊢ (A ∈ {x ∈ B ∣ φ} ↔ (A ∈ B ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 Ⅎwnf 1544 = wceq 1642 ∈ wcel 1710 {cab 2339 Ⅎwnfc 2477 {crab 2619 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rab 2624 df-v 2862 |
This theorem is referenced by: elrab 2995 |
Copyright terms: Public domain | W3C validator |