NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elrabf GIF version

Theorem elrabf 2994
Description: Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.)
Hypotheses
Ref Expression
elrabf.1 xA
elrabf.2 xB
elrabf.3 xψ
elrabf.4 (x = A → (φψ))
Assertion
Ref Expression
elrabf (A {x B φ} ↔ (A B ψ))

Proof of Theorem elrabf
StepHypRef Expression
1 elex 2868 . 2 (A {x B φ} → A V)
2 elex 2868 . . 3 (A BA V)
32adantr 451 . 2 ((A B ψ) → A V)
4 df-rab 2624 . . . 4 {x B φ} = {x (x B φ)}
54eleq2i 2417 . . 3 (A {x B φ} ↔ A {x (x B φ)})
6 elrabf.1 . . . 4 xA
7 elrabf.2 . . . . . 6 xB
86, 7nfel 2498 . . . . 5 x A B
9 elrabf.3 . . . . 5 xψ
108, 9nfan 1824 . . . 4 x(A B ψ)
11 eleq1 2413 . . . . 5 (x = A → (x BA B))
12 elrabf.4 . . . . 5 (x = A → (φψ))
1311, 12anbi12d 691 . . . 4 (x = A → ((x B φ) ↔ (A B ψ)))
146, 10, 13elabgf 2984 . . 3 (A V → (A {x (x B φ)} ↔ (A B ψ)))
155, 14syl5bb 248 . 2 (A V → (A {x B φ} ↔ (A B ψ)))
161, 3, 15pm5.21nii 342 1 (A {x B φ} ↔ (A B ψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wnf 1544   = wceq 1642   wcel 1710  {cab 2339  wnfc 2477  {crab 2619  Vcvv 2860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rab 2624  df-v 2862
This theorem is referenced by:  elrab  2995
  Copyright terms: Public domain W3C validator