NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elrab Unicode version

Theorem elrab 2994
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.)
Hypothesis
Ref Expression
elrab.1
Assertion
Ref Expression
elrab
Distinct variable groups:   ,   ,   ,
Allowed substitution hint:   ()

Proof of Theorem elrab
StepHypRef Expression
1 nfcv 2489 . 2  F/_
2 nfcv 2489 . 2  F/_
3 nfv 1619 . 2  F/
4 elrab.1 . 2
51, 2, 3, 4elrabf 2993 1
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   wceq 1642   wcel 1710  crab 2618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2478  df-rab 2623  df-v 2861
This theorem is referenced by:  elrab3  2995  elrab2  2996  ralrab  2998  rexrab  3000  rabsnt  3797  unimax  3925  ssintub  3944  intminss  3952  elpmg  6013  nmembers1lem1  6268  nmembers1lem3  6270
  Copyright terms: Public domain W3C validator