New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqop | Unicode version |
Description: Express equality to an ordered pair. (Contributed by SF, 6-Jan-2015.) |
Ref | Expression |
---|---|
eqop | Phi Phi 0c |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2347 | . 2 | |
2 | df-op 4567 | . . . . . . 7 Phi Phi 0c | |
3 | 2 | eleq2i 2417 | . . . . . 6 Phi Phi 0c |
4 | elun 3221 | . . . . . 6 Phi Phi 0c Phi Phi 0c | |
5 | 3, 4 | bitri 240 | . . . . 5 Phi Phi 0c |
6 | abid 2341 | . . . . . 6 Phi Phi | |
7 | abid 2341 | . . . . . 6 Phi 0c Phi 0c | |
8 | 6, 7 | orbi12i 507 | . . . . 5 Phi Phi 0c Phi Phi 0c |
9 | 5, 8 | bitri 240 | . . . 4 Phi Phi 0c |
10 | 9 | bibi2i 304 | . . 3 Phi Phi 0c |
11 | 10 | albii 1566 | . 2 Phi Phi 0c |
12 | 1, 11 | bitri 240 | 1 Phi Phi 0c |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wo 357 wal 1540 wceq 1642 wcel 1710 cab 2339 wrex 2616 cun 3208 csn 3738 0cc0c 4375 cop 4562 Phi cphi 4563 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-op 4567 |
This theorem is referenced by: setconslem3 4734 setconslem7 4738 |
Copyright terms: Public domain | W3C validator |