| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > eqpw1 | Unicode version | ||
| Description: A condition for equality to unit power class. (Contributed by SF, 21-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| eqpw1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pw1ss1c 4159 | 
. . 3
 | |
| 2 | sseq1 3293 | 
. . 3
 | |
| 3 | 1, 2 | mpbiri 224 | 
. 2
 | 
| 4 | ssofeq 4078 | 
. . . 4
 | |
| 5 | 1, 4 | mpan2 652 | 
. . 3
 | 
| 6 | df-ral 2620 | 
. . . . 5
 | |
| 7 | el1c 4140 | 
. . . . . . . . 9
 | |
| 8 | 7 | imbi1i 315 | 
. . . . . . . 8
 | 
| 9 | 19.23v 1891 | 
. . . . . . . 8
 | |
| 10 | 8, 9 | bitr4i 243 | 
. . . . . . 7
 | 
| 11 | 10 | albii 1566 | 
. . . . . 6
 | 
| 12 | alcom 1737 | 
. . . . . 6
 | |
| 13 | 11, 12 | bitr4i 243 | 
. . . . 5
 | 
| 14 | 6, 13 | bitri 240 | 
. . . 4
 | 
| 15 | snex 4112 | 
. . . . . . 7
 | |
| 16 | eleq1 2413 | 
. . . . . . . 8
 | |
| 17 | eleq1 2413 | 
. . . . . . . 8
 | |
| 18 | 16, 17 | bibi12d 312 | 
. . . . . . 7
 | 
| 19 | 15, 18 | ceqsalv 2886 | 
. . . . . 6
 | 
| 20 | snelpw1 4147 | 
. . . . . . 7
 | |
| 21 | 20 | bibi2i 304 | 
. . . . . 6
 | 
| 22 | 19, 21 | bitri 240 | 
. . . . 5
 | 
| 23 | 22 | albii 1566 | 
. . . 4
 | 
| 24 | 14, 23 | bitri 240 | 
. . 3
 | 
| 25 | 5, 24 | syl6bb 252 | 
. 2
 | 
| 26 | 3, 25 | biadan2 623 | 
1
 | 
| Colors of variables: wff setvar class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-pw 3725 df-sn 3742 df-1c 4137 df-pw1 4138 | 
| This theorem is referenced by: eqpw1relk 4480 | 
| Copyright terms: Public domain | W3C validator |