NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqsbc1 Unicode version

Theorem eqsbc1 3086
Description: Substitution for the left-hand side in an equality. Class version of eqsb1 2454. (Contributed by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
eqsbc1  [.  ].
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem eqsbc1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3049 . 2  [.  ].  [.  ].
2 eqeq1 2359 . 2
3 sbsbc 3051 . . 3  [.  ].
4 eqsb1 2454 . . 3
53, 4bitr3i 242 . 2  [.  ].
61, 2, 5vtoclbg 2916 1  [.  ].
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wceq 1642  wsb 1648   wcel 1710   [.wsbc 3047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-sbc 3048
This theorem is referenced by:  sbceqal  3098  eqsbc2  3104
  Copyright terms: Public domain W3C validator