New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqsb1 | GIF version |
Description: Substitution for the left-hand side in an equality. Class version of equsb3 2102. (Contributed by Rodolfo Medina, 28-Apr-2010.) |
Ref | Expression |
---|---|
eqsb1 | ⊢ ([y / x]x = A ↔ y = A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqsb1lem 2453 | . . 3 ⊢ ([w / x]x = A ↔ w = A) | |
2 | 1 | sbbii 1653 | . 2 ⊢ ([y / w][w / x]x = A ↔ [y / w]w = A) |
3 | nfv 1619 | . . 3 ⊢ Ⅎw x = A | |
4 | 3 | sbco2 2086 | . 2 ⊢ ([y / w][w / x]x = A ↔ [y / x]x = A) |
5 | eqsb1lem 2453 | . 2 ⊢ ([y / w]w = A ↔ y = A) | |
6 | 2, 4, 5 | 3bitr3i 266 | 1 ⊢ ([y / x]x = A ↔ y = A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 [wsb 1648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-cleq 2346 |
This theorem is referenced by: pm13.183 2980 eqsbc1 3086 |
Copyright terms: Public domain | W3C validator |