| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqsn | Unicode version | ||
| Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) |
| Ref | Expression |
|---|---|
| eqsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3324 |
. . 3
| |
| 2 | df-ne 2519 |
. . . . 5
| |
| 3 | sssn 3865 |
. . . . . . 7
| |
| 4 | 3 | biimpi 186 |
. . . . . 6
|
| 5 | 4 | ord 366 |
. . . . 5
|
| 6 | 2, 5 | syl5bi 208 |
. . . 4
|
| 7 | 6 | com12 27 |
. . 3
|
| 8 | 1, 7 | impbid2 195 |
. 2
|
| 9 | dfss3 3264 |
. . 3
| |
| 10 | elsn 3749 |
. . . 4
| |
| 11 | 10 | ralbii 2639 |
. . 3
|
| 12 | 9, 11 | bitri 240 |
. 2
|
| 13 | 8, 12 | syl6bb 252 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |