NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqsn GIF version

Theorem eqsn 3868
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.)
Assertion
Ref Expression
eqsn (A → (A = {B} ↔ x A x = B))
Distinct variable groups:   x,A   x,B

Proof of Theorem eqsn
StepHypRef Expression
1 eqimss 3324 . . 3 (A = {B} → A {B})
2 df-ne 2519 . . . . 5 (A ↔ ¬ A = )
3 sssn 3865 . . . . . . 7 (A {B} ↔ (A = A = {B}))
43biimpi 186 . . . . . 6 (A {B} → (A = A = {B}))
54ord 366 . . . . 5 (A {B} → (¬ A = A = {B}))
62, 5syl5bi 208 . . . 4 (A {B} → (AA = {B}))
76com12 27 . . 3 (A → (A {B} → A = {B}))
81, 7impbid2 195 . 2 (A → (A = {B} ↔ A {B}))
9 dfss3 3264 . . 3 (A {B} ↔ x A x {B})
10 elsn 3749 . . . 4 (x {B} ↔ x = B)
1110ralbii 2639 . . 3 (x A x {B} ↔ x A x = B)
129, 11bitri 240 . 2 (A {B} ↔ x A x = B)
138, 12syl6bb 252 1 (A → (A = {B} ↔ x A x = B))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357   = wceq 1642   wcel 1710  wne 2517  wral 2615   wss 3258  c0 3551  {csn 3738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator