New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqsn | GIF version |
Description: Two ways to express that a nonempty set equals a singleton. (Contributed by NM, 15-Dec-2007.) |
Ref | Expression |
---|---|
eqsn | ⊢ (A ≠ ∅ → (A = {B} ↔ ∀x ∈ A x = B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqimss 3324 | . . 3 ⊢ (A = {B} → A ⊆ {B}) | |
2 | df-ne 2519 | . . . . 5 ⊢ (A ≠ ∅ ↔ ¬ A = ∅) | |
3 | sssn 3865 | . . . . . . 7 ⊢ (A ⊆ {B} ↔ (A = ∅ ∨ A = {B})) | |
4 | 3 | biimpi 186 | . . . . . 6 ⊢ (A ⊆ {B} → (A = ∅ ∨ A = {B})) |
5 | 4 | ord 366 | . . . . 5 ⊢ (A ⊆ {B} → (¬ A = ∅ → A = {B})) |
6 | 2, 5 | syl5bi 208 | . . . 4 ⊢ (A ⊆ {B} → (A ≠ ∅ → A = {B})) |
7 | 6 | com12 27 | . . 3 ⊢ (A ≠ ∅ → (A ⊆ {B} → A = {B})) |
8 | 1, 7 | impbid2 195 | . 2 ⊢ (A ≠ ∅ → (A = {B} ↔ A ⊆ {B})) |
9 | dfss3 3264 | . . 3 ⊢ (A ⊆ {B} ↔ ∀x ∈ A x ∈ {B}) | |
10 | elsn 3749 | . . . 4 ⊢ (x ∈ {B} ↔ x = B) | |
11 | 10 | ralbii 2639 | . . 3 ⊢ (∀x ∈ A x ∈ {B} ↔ ∀x ∈ A x = B) |
12 | 9, 11 | bitri 240 | . 2 ⊢ (A ⊆ {B} ↔ ∀x ∈ A x = B) |
13 | 8, 12 | syl6bb 252 | 1 ⊢ (A ≠ ∅ → (A = {B} ↔ ∀x ∈ A x = B)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∀wral 2615 ⊆ wss 3258 ∅c0 3551 {csn 3738 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |