New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > eqvincf | Unicode version |
Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
eqvincf.1 | |
eqvincf.2 | |
eqvincf.3 |
Ref | Expression |
---|---|
eqvincf |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvincf.3 | . . 3 | |
2 | 1 | eqvinc 2967 | . 2 |
3 | eqvincf.1 | . . . . 5 | |
4 | 3 | nfeq2 2501 | . . . 4 |
5 | eqvincf.2 | . . . . 5 | |
6 | 5 | nfeq2 2501 | . . . 4 |
7 | 4, 6 | nfan 1824 | . . 3 |
8 | nfv 1619 | . . 3 | |
9 | eqeq1 2359 | . . . 4 | |
10 | eqeq1 2359 | . . . 4 | |
11 | 9, 10 | anbi12d 691 | . . 3 |
12 | 7, 8, 11 | cbvex 1985 | . 2 |
13 | 2, 12 | bitri 240 | 1 |
Colors of variables: wff setvar class |
Syntax hints: wb 176 wa 358 wex 1541 wceq 1642 wcel 1710 wnfc 2477 cvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |