| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > eqvincf | GIF version | ||
| Description: A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| eqvincf.1 | ⊢ ℲxA |
| eqvincf.2 | ⊢ ℲxB |
| eqvincf.3 | ⊢ A ∈ V |
| Ref | Expression |
|---|---|
| eqvincf | ⊢ (A = B ↔ ∃x(x = A ∧ x = B)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvincf.3 | . . 3 ⊢ A ∈ V | |
| 2 | 1 | eqvinc 2967 | . 2 ⊢ (A = B ↔ ∃y(y = A ∧ y = B)) |
| 3 | eqvincf.1 | . . . . 5 ⊢ ℲxA | |
| 4 | 3 | nfeq2 2501 | . . . 4 ⊢ Ⅎx y = A |
| 5 | eqvincf.2 | . . . . 5 ⊢ ℲxB | |
| 6 | 5 | nfeq2 2501 | . . . 4 ⊢ Ⅎx y = B |
| 7 | 4, 6 | nfan 1824 | . . 3 ⊢ Ⅎx(y = A ∧ y = B) |
| 8 | nfv 1619 | . . 3 ⊢ Ⅎy(x = A ∧ x = B) | |
| 9 | eqeq1 2359 | . . . 4 ⊢ (y = x → (y = A ↔ x = A)) | |
| 10 | eqeq1 2359 | . . . 4 ⊢ (y = x → (y = B ↔ x = B)) | |
| 11 | 9, 10 | anbi12d 691 | . . 3 ⊢ (y = x → ((y = A ∧ y = B) ↔ (x = A ∧ x = B))) |
| 12 | 7, 8, 11 | cbvex 1985 | . 2 ⊢ (∃y(y = A ∧ y = B) ↔ ∃x(x = A ∧ x = B)) |
| 13 | 2, 12 | bitri 240 | 1 ⊢ (A = B ↔ ∃x(x = A ∧ x = B)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Ⅎwnfc 2477 Vcvv 2860 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |