New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > evennnul | Unicode version |
Description: An even number is nonempty. (Contributed by SF, 22-Jan-2015.) |
Ref | Expression |
---|---|
evennnul | Evenfin |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2359 | . . . . . 6 | |
2 | 1 | rexbidv 2635 | . . . . 5 Nn Nn |
3 | neeq1 2524 | . . . . 5 | |
4 | 2, 3 | anbi12d 691 | . . . 4 Nn Nn |
5 | df-evenfin 4444 | . . . 4 Evenfin Nn | |
6 | 4, 5 | elab2g 2987 | . . 3 Evenfin Evenfin Nn |
7 | 6 | ibi 232 | . 2 Evenfin Nn |
8 | 7 | simprd 449 | 1 Evenfin |
Colors of variables: wff setvar class |
Syntax hints: wi 4 wa 358 wceq 1642 wcel 1710 wne 2516 wrex 2615 c0 3550 Nn cnnc 4373 cplc 4375 Evenfin cevenfin 4436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-rex 2620 df-v 2861 df-evenfin 4444 |
This theorem is referenced by: evenoddnnnul 4514 vinf 4555 |
Copyright terms: Public domain | W3C validator |